Name:
remotesensing-11-03054.pdf
Size:
7.747Mb
Format:
PDF
Description:
Final Published Version
Author
Ayasse, Alana K.Dennison, Philip E.
Foote, Markus
Thorpe, Andrew K.
Joshi, Sarang
Green, Robert O.
Duren, Riley M.
Thompson, David R.
Roberts, Dar A.
Affiliation
Univ Arizona, Off Res Innovat & ImpactIssue Date
2019-12-17Keywords
methaneimaging spectrometer
hyperspectral
gas plumes
satellite
EMIT
AVIRIS-NG
matched filter
remote sensing
Metadata
Show full item recordPublisher
MDPICitation
Ayasse, A.K.; Dennison, P.E.; Foote, M.; Thorpe, A.K.; Joshi, S.; Green, R.O.; Duren, R.M.; Thompson, D.R.; Roberts, D.A. Methane Mapping with Future Satellite Imaging Spectrometers. Remote Sens. 2019, 11, 3054.Journal
REMOTE SENSINGRights
Copyright © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
This study evaluates a new generation of satellite imaging spectrometers to measure point source methane emissions from anthropogenic sources. We used the Airborne Visible and Infrared Imaging Spectrometer Next Generation(AVIRIS-NG) images with known methane plumes to create two simulated satellite products. One simulation had a 30 m spatial resolution with similar to 200 Signal-to-Noise Ratio (SNR) in the Shortwave Infrared (SWIR) and the other had a 60 m spatial resolution with similar to 400 SNR in the SWIR; both products had a 7.5 nm spectral spacing. We applied a linear matched filter with a sparsity prior and an albedo correction to detect and quantify the methane emission in the original AVIRIS-NG images and in both satellite simulations. We also calculated an emission flux for all images. We found that all methane plumes were detectable in all satellite simulations. The flux calculations for the simulated satellite images correlated well with the calculated flux for the original AVIRIS-NG images. We also found that coarsening spatial resolution had the largest impact on the sensitivity of the results. These results suggest that methane detection and quantification of point sources will be possible with the next generation of satellite imaging spectrometers.Note
Open access journalISSN
2072-4292Version
Final published versionae974a485f413a2113503eed53cd6c53
10.3390/rs11243054
Scopus Count
Collections
Except where otherwise noted, this item's license is described as Copyright © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).