• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Solar Desalination in Arid Lands

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_17753_sip1_m.pdf
    Size:
    7.976Mb
    Format:
    PDF
    Download
    Author
    Peon Anaya, Rodolfo
    Issue Date
    2020
    Keywords
    Solar Desalination
    Sustainable Desalination
    Water-Energy Nexus
    Zero-Liquid Discharge
    Advisor
    Angel, J. Roger P.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Embargo
    Release after 02/17/2024
    Abstract
    Freshwater consumption has already exceeded natural replenishment in many parts of the world. With a constant population growth, this unbalance does nothing but to accelerate. Being agriculture the largest water consumer, food production will be extremely challenging in the future; particularly in the most arid regions of the world. Migration to the cities will continue, and by the year 2050 about half of world’s population will live within 200 kilometers of the coast. This situation will undoubtedly make of seawater desalination an attractive alternative. However practically all desalination techniques are energy-intensive and produce large volumes of saline waste; both with potential environmental implications. To date, less than 1% of the roughly 20,000 desalination plants worldwide are powered by renewable energy directly, the reminder relies on fossil-fuels or the power grid (which also heavily relies on non-renewable energy sources in most countries). In this context, a growth in global desalination capacity, will also mean an increase in global CO2 emissions. In addition, current waste management by most desalination plants essentially consists of returning brine back to the environment. Therefore, an increase in desalination capacity in coastal areas, will also add to the stressors of marine ecosystems; which already include over-exploitation, pollution and climate change. With the objective of exploring sustainable desalination alternatives for the future, this work performed a literature review of large-scale solar thermal desalination, their integration to concentrating solar power plants and its potential implementation in the Sonoran Desert. In addition, this work proposed and mathematically evaluated a hybrid desalination unit (HDU) powered by high concentration photovoltaics with thermal collection capability for remote non-serviced homes at the Navajo Nation. As discussed in this work, the combination of solar power tower plants with thermal desalination can provide electricity and water at the same time cost-competitively and with a possibility of zero-liquid discharge (ZLD). It is also shown that this technological integration has the potential to secure water and electricity for Arizona, through binational desalination plants in the Sea of Cortez, with minimal environmental impact. In addition, experimental results from modeling the proposed HDU show that these units can offer potable water at nearly half the cost of hauling it at the Navajo Nation. Furthermore, it is shown that these units can double the amount of water available, offer ZLD, deliver a surplus of electric power and provide the means for growing food all year round.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Arid Lands Resource Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.