Characteristics of Ice Cloud–Precipitation of Warm Season Mesoscale Convective Systems over the Great Plains
Affiliation
Univ Arizona, Dept Hydrol & Atmospher SciIssue Date
2020-02-21
Metadata
Show full item recordPublisher
AMER METEOROLOGICAL SOCCitation
Characteristics of Ice Cloud–Precipitation of Warm Season Mesoscale Convective Systems over the Great Plains: Journal of Hydrometeorology: Vol 21, No 2. (2020). Retrieved April 14, 2020, from Journal of Hydrometeorology website: https://journals.ametsoc.org/doi/10.1175/JHM-D-19-0176.1 Journal
JOURNAL OF HYDROMETEOROLOGYRights
Copyright © 2020 American Meteorological Society.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
In this study, the mesoscale convective systems (MCSs) are tracked using high-resolution radar and satellite observations over the U.S. Great Plains during April-August from 2010 to 2012. The spatiotemporal variability of MCS precipitation is then characterized using the Stage IV product. We found that the spatial variability and nocturnal peaks of MCS precipitation are primarily driven by the MCS occurrence rather than the precipitation intensity. The tracked MCSs are further classified into convective core (CC), stratiform rain (SR), and anvil clouds regions. The spatial variability and diurnal cycle of precipitation in the SR regions of MCSs are not as significant as those of MCS precipitation. In the SR regions, the high-resolution, long-term ice cloud microphysical properties [ice water content (IWC) and ice water paths (IWPs)] are provided. The IWCs generally decrease with height. Spatially, the IWC, IWP, and precipitation are all higher over the southern Great Plains than over the northern Great Plains. Seasonally, those ice and precipitation properties are all higher in summer than in spring. Comparing the peak timings of MCS precipitation and IWPs from the diurnal cycles and their composite evolutions, it is found that when using the peak timing of IWPSR as a reference, the heaviest precipitation in the MCS convective core occurs earlier, while the strongest SR precipitation occurs later. The shift of peak timings could be explained by the stratiform precipitation formation process. The IWP and precipitation relationships are different at MCS genesis, mature, and decay stages. The relationships and the transition processes from ice particles to precipitation also depend on the low-level humidity.Note
6 month embargo; published online: 21 February 2020ISSN
1525-755XVersion
Final published versionae974a485f413a2113503eed53cd6c53
10.1175/jhm-d-19-0176.1