Show simple item record

dc.contributor.authorMcLaren, S.
dc.contributor.authorKilen, I.
dc.contributor.authorMoloney, J. V.
dc.date.accessioned2020-04-30T20:07:03Z
dc.date.available2020-04-30T20:07:03Z
dc.date.issued2020-01-21
dc.identifier.citationAppl. Phys. Lett. 116, 031102 (2020); https://doi.org/10.1063/1.5134070en_US
dc.identifier.issn0003-6951
dc.identifier.doi10.1063/1.5134070
dc.identifier.urihttp://hdl.handle.net/10150/641136
dc.description.abstractThe generation and control of higher order transverse modes within a mode-locked vertical external-cavity surface-emitting laser with a semiconductor saturable absorber mirror are studied using a numerical solver for the two dimensional Maxwell Semiconductor Bloch Equations. In this work, the complex spatiotemporal evolution of the pulse toward a mode-locked state depends sensitively on the pumping level and pump to pulse spot size ratio. Microscopic physics sourced effects such as kinetic hole burning and filling, occurring on femtosecond timescales, play a central role. In particular, unsaturated charge carriers, both spectrally and transversally, initiate the development of asymmetric pulse profiles that transform over various characteristic time scales in a carrier chasing behavior.en_US
dc.language.isoenen_US
dc.publisherAMER INST PHYSICSen_US
dc.rightsCopyright © 2020 Author(s).en_US
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.titleMicroscopic modeling of transverse mode instabilities in mode-locked vertical external-cavity surface-emitting lasersen_US
dc.typeArticleen_US
dc.contributor.departmentUniv Arizona, Program Appl Mathen_US
dc.contributor.departmentUniv Arizona, Arizona Ctr Math Scien_US
dc.contributor.departmentUniv Arizona, Wyant Coll Opt Scien_US
dc.contributor.departmentUniv Arizona, Dept Mathen_US
dc.identifier.journalAPPLIED PHYSICS LETTERSen_US
dc.description.note12 month embargo; published online: 21 January 2020en_US
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.en_US
dc.eprint.versionFinal published versionen_US
dc.identifier.pii10.1063/1.5134070
dc.source.journaltitleApplied Physics Letters
dc.source.volume116
dc.source.issue3
dc.source.beginpage031102


Files in this item

Thumbnail
Name:
1.5134070.pdf
Size:
1.700Mb
Format:
PDF
Description:
Final Published Version

This item appears in the following Collection(s)

Show simple item record