• Paleomagnetic and rock magnetic study of the Yaxcopoil-1 impact breccia sequence, Chicxulub impact crater (Mexico)

      Urrutia-Fucugauchi, J.; Soler-Arechalde, A. M.; Rebolledo-Vieyra, M.; Vera-Sanchez, P. (The Meteoritical Society, 2004-01-01)
      Results of a detailed paleomagnetic and rock magnetic study of samples of the impact breccia sequence cored in the Yaxcopoil-1 (Yax-1) borehole between abou 800 m and 896 m are presented. The Yax-1 breccia sequence occurs from 794.63 m to 894.94 m and consists of rerdeposited melt-rich, clast-size sorted, fine-grained suevites; melt rich, no clast-size sorting, medium-grained suevites; coarse suevitic melt agglomerates; coarse melt-rich heterogeneous suevites; brecciated susevites; and coarse carbonate and silicate melt suevites. The low-field susceptibility ranges from -0.3 to 40187 x 10^(-6) SI and the NRM intensity ranges from 0.02 mA/m up to 37510 mA/m. In general, the NRM intensity and magnetic susceptibility present wide rangesand are positively correlated, pointing to varying magnetic mineral contents and textures of the melt-rich breccia sequence. The vectorial composition and magnetic stability of NRM were investigated by both stepwise alternating field and thermal demagnetization. In most cases, characteristic single component magnetizations are observed. Both upward and downward inclinations are present through the sequence, and we interpret the reverse magnetization as the primary component in the breccias. Both the clasts and matrix forming the breccia appear to have been subjected to a wide range of temperature/pressure conditions and show distinct rock magnetic properties. An extended interval of remanence acquisition and secondary partial or total remagnetization may explain the paleomagnetic results.
    • Paleomagnetism and petrophysics of the Jänisjärvi impact structure, Russian Karelia

      Salminen, J.; Donadini, F.; Pesonen, L. J.; Masaitis, V. L.; Naumov, M. V. (The Meteoritical Society, 2006-01-01)
      Paleomagnetic, rock magnetic, and petrophysical results are presented for impactites and target rocks from the Lake Jänisjärvi impact structure, Russian Karelia. The impactites (tagamites, suevites, and lithic breccias) are characterized by increased porosity and magnetization, which is in agreement with observations performed at other impact structures. Thermomagnetic, hysteresis, and scanning electron microscope (SEM) analysis document the presence of primary multidomain titanomagnetite with additional secondary titanomaghemite and ilmenohematite. The characteristic impact-related remanent magnetization (ChRM) direction (D = 101.5 degrees, I = 73.1 degrees, alpha-95 = 6.2 degrees) yields a pole (Lat. = 45.0mdegrees N, Long. = 76.9 degrees E, dp = 9.9 degrees, dm = 11.0 degrees). Additionally, the same component is observed as an overprint on some rocks located in the vicinity of the structure, which provides proofs of its primary origin. An attempt was made to determine the ancient geomagnetic field intensity. Seven reliable results were obtained, yielding an ancient intensity of 68.7 +/- 7.6 micro-T (corresponding to VDM of 10.3 +/- 1.1 x 10^22 Am^2). The intensity, however, appears to be biased toward high values mainly because of the concave shape of the Arai diagrams. The new paleomagnetic data and published isotopic ages for the structure are in disagreement. According to well-defined paleomagnetic data, two possible ages for magnetization of Jänisjärvi rocks exist: 1) Late Sveconorwegian age (900-850 Myr) or 2) Late Cambrian age (~500 Myr). However, published isotopic ages are 718 +/- 5 Myr (K-Ar) and 698 +/- 22 Myr (39Ar-40Ar), but such isotopic dating methods are often ambiguous for the impactites.
    • Partial melting of H6 ordinary chondrite Kernouve: Constraints on the effects of reducing conditions on oxidized compositions

      Ford, Rena L.; Benedix, Gretchen K.; McCoy, Timothy J.; Rushmer, Tracy (The Meteoritical Society, 2008-01-01)
      Partial melting experiments at temperatures of 950-1300 degrees C were conducted on the H6 chondrite Kernouv under reducing conditions using CO-CO2 gas mixing and graphite-buffered sealed silica tubes to examine the effect of reducing conditions during melting of starting materials that are more oxidized relative to the oxygen fugacity conditions of the experiments. The experiments produced a range of mineralogical and compositional changes. Olivine exhibits significant reduction to compositions of Fa25 at temperatures of 1300 degrees C. In contrast, orthopyroxene exhibits only slight reduction until the highest temperatures. Chromite is sometimes consumed by intruding sulfides, and displays increasingly magnesian compositions ranging as low as Fe/Fe + Mg of 0.1 at a constant Cr/Cr + Al ratio. The compositional changes with increasing temperature reflect a complex set of reactions, including oxidation-reduction. One application of these experiments address whether primitive achondrites could have formed from ordinary chondrite-like precursors by partial melting under reducing conditions. While changes observed in olivine and troilite compositions might support such an idea, differences in oxygen isotopic composition, Cr/Cr + Al in chromite, orthopyroxene compositions, and thermodynamic evidence against reduction during melting of primitive achondrites (Benedix et al. 2005) firmly refute such an idea.
    • Partitioning of Ca and Al between forsterite and silicate melt in dynamic systems with implications for the origin of Ca, Al-rich forsterites in primitive meteorites

      Pack, A.; Palme, H. (The Meteoritical Society, 2003-01-01)
      We report the results of dynamic crystallization experiments that were specifically designed to study the dependence of Ca and Al partitioning between forsterite and melt in rapidly cooling Ca- and Al-rich melts. The partitioning of Ca between olivine and silicate melt is found to be independent of the cooling rate within the range of 1.5 to 1000 degrees C/hr and at CaO contents of up to 25 wt%. Within analytical uncertainty, our data plot on the equilibrium partitioning curve obtained by Libourel (1999). The partitioning behavior of Al at high cooling rates is more complex. Aluminum is much more heterogenously distributed in the olivine and the co-existing melt than Ca. But, no systematic trend of Al partition coefficient with cooling rate is observed. We apply the results of the experiments to the formation of meteoritic forsterites with relatively high contents of Ca and Al. Although these forsterites are found frequently inside chondrules, the Ca contents of their host chondrules are far too low to crystallize these high Ca-forsterites. This is also true for very rapid cooling of chondrule melts. The parental melt of these forsterites requires CaO contents above 20 wt%.
    • Pb isotopic age of the Allende chondrules

      Amelin, Y.; Krot, A. (The Meteoritical Society, 2007-01-01)
      We have studied Pb-isotope systematics of chondrules from the oxidized CV3 carbonaceous chondrite Allende. The chondrules contain variably radiogenic Pb with a 206Pb/204Pb ratio between 19.5-268. Pb-Pb isochron regression for eight most radiogenic analyses yielded the date of 4566.2 +/- 2.5 Ma. Internal residue-leachate isochrons for eight chondrule fractions yielded consistent dates with a weighted average of 4566.6 +/- 1.0 Ma, our best estimate for an average age of Allende chondrule formation. This Pb-Pb age is consistent with the range of model 26Al-26Mg ages of bulk Allende chondrules reported by Bizzarro et al. (2004) and is indistinguishable from Pb-Pb ages of Ca-Al-rich inclusions (CAIs) from CV chondrites (4567.2 +/- 0.6 Ma) (Amelin et al. 2002) and the oldest basaltic meteorites. We infer that chondrule formation started contemporaneously with or shortly after formation of CV CAIs and overlapped in time with formation of the basaltic crust and iron cores of differentiated asteroids. The entire period of chondrule formation lasted from 4566.6 +/- 1.0 Ma (Allende) to 4564.7 +/- 0.6 Ma (CR chondrite Acfer 059) to 4562.7 +/- 0.5 Ma (CB chondrite Gujba) and was either continuous or consisted of at least three discrete episodes. Since chondrules in CB chondrites appear to have formed from a vapor-melt plume produced by a giant impact between planetary embryos after dust in the protoplanetary disk had largely dissipated (Krot et al. 2005), there were possibly a variety of processes in the early solar system occurring over at least 4-5 Myr that we now combine under the umbrella name of chondrule formation.
    • PDF orientations in shocked quartz grains around the Chicxulub crater

      Nakano, Yoichiro; Goto, Kazuhisa; Matsui, Takafumi; Tada, Ryuji; Tajika, Eiichi (The Meteoritical Society, 2008-01-01)
      We measured 852 sets of planar deformation features (PDFs) in shocked quartz grains in impactite samples of the Yaxcopoil (YAX-1) core and from 4 Cretaceous/Tertiary (K/T) boundary deposits: the Monaca, the Cacarajcara, and the Pealver formations in Cuba, and DSDP site 536, within 800 km of the Chicxulub crater, in order to investigate variations of PDF orientations in the proximity of the crater. Orientations of PDFs show a broad distribution with peaks at omega {1013}, pi {1012}, and xi {1112}, plus r, z {1011} orientations with minor c(0001), s{1121}, t{2241} plus x{5161}, and m{1010} plus a{11-20} orientations. Planar deformation features with c(0001) orientation are relatively more abundant in the proximity of the Chicxulub crater than in distal sitessuch as North America, the Pacific Ocean, and Europe. This feature indicates that in the proximity ofthe crater, part of the shocked quartz grains in the K/T boundary deposits were derived from the lowshock pressure zones. Moreover, the orientations of PDFs with xi {1122} plus r, z {1011} are high in our studied sites, and frequencies of these orientations decrease with increasing distance from the crater. On the other hand, absence of c(0001) and the rare occurrence of PDFs with xi {1122} plus r, z {1011} orientations in the sample from the YAX-1 core that was taken at the top of the impactitelayer of the Chicxulub crater suggests that the sampling horizon that reflects a certain cratering stageis also an important factor for variations in shocked quartz.
    • Peak metamorphic temperatures in type 6 ordinary chondrites: An evaluation of pyroxene and plagioclase geothermometry

      Slater-Reynolds, V.; McSween, H. Y. (The Meteoritical Society, 2005-01-01)
      Quantifying the peak temperatures achieved during metamorphism is critical for understanding the thermal histories of ordinary chondrite parent bodies. Various geothermometers have been used to estimate equilibration temperatures for chondrites of the highest metamorphic grade (type 6), but results are inconsistent and span hundreds of degrees. Because different geothermometers and calibration models were used with different meteorites, it is unclear whether variations in peak temperatures represent actual ranges of metamorphic conditions within type 6 chondrites or differences in model calibrations. We addressed this problem by performing twopyroxene geothermometry, using QUILF95, on the same type 6 chondrites for which peak temperatures were estimated using the plagioclase geothermometer (Nakamuta and Motomura 1999). We also calculated temperatures for published pyroxene analyses from other type 6 H, L, and LL chondrites to determine the most representative peak metamorphic temperatures for ordinary chondrites. Pyroxenes record a narrow, overlapping range of temperatures in H6 (865-926 degrees C), L6 (812-934 degrees C), and LL6 (874-945 degrees C) chondrites. Plagioclase temperature estimates are 96-179 degrees C lower than pyroxenes in the same type 6 meteorites. Plagioclase estimates may not reflect peak metamorphic temperatures because chondrule glass probably recrystallized to plagioclase prior to reaching the metamorphic peak. The average temperature for H, L, and LL chondrites (~900 degrees C), which agrees with previously published oxygen isotope geothermometry, is at least 50 degrees C lower than the peak temperatures used in current asteroid thermal evolution models. This difference may require minor adjustments to thermal model calculations.
    • Penetration tracks in aerogel produced by Al2O3 spheres

      Hörz, F.; Cintala, M. J.; See, T. H.; Nakamura-Messenger, K. (The Meteoritical Society, 2009-01-01)
      We conducted impact experiments into SiO2-based aerogel of uniform density (0.02 g cm^(-3)) with spherical corundum projectiles. The highly refractory nature and mechanical strength of corundum minimizes projectile deformation and continuous mass loss by ablation that might have affected earlier experiments with soda-lime glass (SLG) impactors into aerogel targets. We find that corundum is a vastly superior penetrator producing tracks a factor of 2.5 longer, yet similar in diameter to those made by SLG. At velocities > 4 km s^(-1) a cylindrical cavity forms, largely by melting of aerogel. The diameter and length of this cavity increase with velocity and impactor size, and its volume dominates total track volume. A continuously tapering, exceptionally long and slender stylus emerges from this cavity and makes up some 80-90% of the total track length; this stylus is characterized by solid-state deformations. Tracks formed below 4 km s^(-1) lack the molten cavity and consist only of a stylus. Projectile residues recovered from a tracks terminus substantially resemble the initial impactors at V < 4 km s^(-1), yet they display two distinct surfaces at higher velocities, such as a blunt, forward face and a well-preserved, hemispherical trailing side; a pronounced, circumferential ridge of compressed and molten aerogel separates these two surfaces. Stringers and patches of melt flow towards the impactors rear where they accumulate in a characteristic melt tip. SEM-EDS analyses indicate the presence of Al in these melts at velocities as low as 5.2 km s^(-1), indicating that the melting point of corundum (2054 degrees C) was exceeded. The thermal model of aerogel impact by Anderson and Cherne (2008) suggests actual aerogel temperatures >5000 K at comparable conditions. We therefore propose that projectile melting occurs predominantly at those surfaces that are in contact with this very hot aerogel, at the expense of viscous heating and associated ablation. Exposure to superheated aerogel may be viewed as extreme form of "flash heating." This seems consistent with observations from the Stardust mission to comet Wild 2, such as relatively pristine interiors of rather large, terminal particles, yet total melting of most fine-grained dust components.
    • Petrogenesis of lunar highlands meteorites: Dhofar 025, Dhofar 081, Dar al Gani 252, and Dar al Gani 400

      Cahill, J. T.; Floss, C.; Anand, M.; Taylor, L. A.; Nazarov, M. A.; Cohen, B. A. (The Meteoritical Society, 2004-01-01)
      The petrogenesis of four lunar highlands meteorites, Dhofar 025 (Dho 025), Dhofar 081 (Dho 081), Dar al Gani 262 (DaG 262), and Dar al Gani 400 (DaG 400) were studied. For Dho 025, measured oxygen isotopic values and Fe-Mn ratios for mafic minerals provide corroboratory evidence that it originated on the Moon. Similarly, Fe-Mn ratios in the mafic minerals of Dho 081 indicate lunar origin. Lithologies in Dho 025 and Dho 081 include lithic clasts, granulites, and mineral fragments. A large number of lithic clasts have plagioclase AN# and coexisting mafic mineral Mg# that plot within the "gap" separating ferroan anorthosite suite (FAN) and high-magnesium suite (HMS) rocks. This is consistent with whole rock Ti-Sm ratios for Dho 025, Dho 081, and DaG 262, which are also intermediate compared to FAN and HMS lithologies. Although ion microprobe analyses performed on Dho 025, Dho 081, DaG 262, and DaG 400 clasts and minerals show far stronger FAN affinities than whole rock data suggest, most clasts indicate admixture of less than or equal to 12% HMS component based on geochemical modeling. In addition, coexisting plagioclase-pyroxene REE concentration ratios in several clasts were compared to experimentally determined plagioclase-pyroxene REE distribution coefficient ratios. Two Dho 025 clasts have concordant plagioclase-pyroxene profiles, indicating that equilibrium between these minerals has been sustained despite shock metamorphism. One clast has an intermediate FAN-HMS composition. These lunar meteorites appear to represent a type of highland terrain that differs substantially from the KREEP-signatured impact breccias that dominate the lunar database. From remote sensing data, it is inferred that the lunar far side appears to have appropriate geochemical signatures and lithologies to be the source regions for these rocks; although, the near side cannot be completely excluded as a possibility. If these rocks are, indeed, from the far side, their geochemical characteristics may have far-reaching implications for our current scientific understanding of the Moon.
    • Petrogenesis of lunar mare basalt meteorite Miller Range 05035

      Liu, Y.; Floss, C.; Day, J. M. D.; Hill, E.; Taylor, L. A. (The Meteoritical Society, 2009-01-01)
      Miller Range (MIL) 05035 is a low-Ti mare basalt that consists predominantly of pyroxene (62.3 vol%) and plagioclase (26.4 vol%). Pyroxenes are strongly shocked and complexly zoned from augite (Wo33) and pigeonite (Wo17) cores with Mg# = 50-54 to hedenbergite rims. Coexisting pyroxene core compositions reflect crystallization temperatures of 1000 to 1100 degrees C. Plagioclase has been completely converted to maskelynite with signs of recrystallization. Maskelynite is relatively uniform in composition (An94Ab6-An91Ab9), except at contacts with late-stage mesostasis areas (elevated K contents, An82Ab15Or3). Symplectites (intergrowth of Fe-augite, fayalite, and silica) of different textures and bulk compositions in MIL 05035 suggest formation by decomposition of ferro-pyroxene during shock-induced heating, which is supported by the total maskelynitization of plagioclase, melt pockets, and the presence of a relict pyroxferroite grain. Petrography and mineral chemistry imply that crystallization of MIL 05035 occurred in the sequence of Fe-poor pyroxenes (Mg# = 50-54), followed by plagioclase and Fe-rich pyroxenes (Mg# = 20-50), and finally hedenbergite, Fe-Ti oxides, and minor late-stage phases. Petrography, bulk chemistry, mineral compositions, and the age of MIL 05035 suggest it is possibly source craterpaired with Asuka (A-) 881757 and Yamato (Y-) 793169, and may also be launch-paired with Meteorite Hills (MET) 01210. MIL 05035 represents an old (~3.8-3.9 Ga), incompatible element-depleted low-Ti basalt that was not sampled during the Apollo or Luna missions. The light-REE depleted nature and lack of Eu anomalies for this meteorite are consistent with an origin distant from the Procellarum KREEP Terrane, and genesis from an early cumulate mantle-source region generated by extensive differentiation of the Moon.
    • Petrogenesis of the new lherzolitic shergottite Grove Mountains 99027: Constraints of petrography, mineral chemistry, and rare earth elements

      Lin, Yangting; Guan, Yunbin; Wang, Daode; Kimura, Makoto; Leshin, Laurie A. (The Meteoritical Society, 2005-01-01)
      We report petrography, mineral chemistry, and microdistribution of rare earth elements (REE) in a new lherzolitic shergottite, Grove Mountains (GRV) 99027. The textural relationship and REE patterns of minerals suggest precipitation of cumulus olivine and chromite, followed by equilibrium crystallization of a closed system with a bulk composition of the inferred intercumulus melt. Subsolidus equilibrium temperatures of pyroxenes and olivine range from 1100 to 1210 degrees C, based on a two-pyroxene thermometry and Ca partitioning between augite and olivine. Oxygen fugacity of the parent magma is 1.5-2.5 (av. 2.0 +/- 0.4) log units below the quartz-fayalite-magnetite (QFM) buffer at 960-1360 degrees C, according to the olivine-orthopyroxene-chromite barometer. The ilmenite-chromite barometer and thermometer show much wider ranges of oxygen fugacity (1.0-7.0 log unit below QFM) and temperature (1130-480 degrees C), suggesting subsolidus equilibration of the oxides at low temperatures, probably due to deep burial of GRV 99027 on Mars. The low oxygen fugacity and LREE depletion of the parent magma of GRV 99027 suggest low contamination by martian crust.Characteristics of GRV 99027 demonstrate similarity of lherzolitic shergottites, suggesting a high possibility of launch pairing or a homogeneous upper mantle of Mars if they were ejected by individual impact events. However, GRV 99027 probably experienced severe post-shock thermal metamorphism in comparison with other lherzolitic shergottites, based on the re-crystallization of maskelynite, the homogeneity of minerals, and the low subsolidus equilibrium temperatures between chromite and ilmenite.
    • Petrogenetic linkages among Martian basalts: Implications based on trace element chemistry of olivine

      Shearer, C. K.; Burger, P. V.; Papike, J. J.; Borg, L. E.; Irving, A. J.; Herd, C. (The Meteoritical Society, 2008-01-01)
      The shergottites exhibit a range of major and trace element compositions, crystallization ages, and initial Sr, Nd, Hf, and Pb isotopic compositions. To constrain the physical mechanisms by which shergottites obtain their compositional characteristics, we examined the major and trace element record preserved in olivine in the more primitive shergottites. Based on such characteristics as the Mg#, V zoning, calculated DNi,Co, the olivine in Y-980459 are most likely phenocrysts. Many of these same characteristics indicate that the olivines in other shergottites are not in equilibrium with the adjacent melt. However, in most cases they are not xenocrystic, but additions of olivine from the same basaltic system. Elephant Moraine (EET) A79001 may be an exception with the olivine data suggesting that it is xenocrystic. In this case, the olivine crystallized from a reduced and LREEdepleted melt and was incorporated into an oxidized and enriched basalt. Vanadium and CaO in olivine appear to record the appearance of spinel and pyroxene on the liquidus of most of the shergottites. Most of the olivine shergottites represent basalts produced by melting of reduced (IW to IW + 1), depleted mantle sources. Olivine data indicate that many of the primary melts derived from this source had similar Ni, Co, and Mn. Shergottites such as Northwest Africa (NWA) 1110/1068 and perhaps Roberts Massif (RBT) 04261 that appear to be derived from more enriched sources have distinctly different olivine. In the case of NWA 1110/1068, the olivine data suggests that the enriched component was added to system prior to olivine crystallization.
    • Petrographic classification of Middle Ordovician fossil meteorites from Sweden

      Bridges, J. C.; Schmitz, B.; Hutchison, R.; Greenwood, R. C.; Tassinari, M.; Franchi, I. A. (The Meteoritical Society, 2007-01-01)
      The maximum diameter of chromite (FeCr2O4) grains within L chondrites reflects the petrographic type of the sample. On the basis of our measurements of nine recent L chondrites, L3 chromite Dmax = 34-50 micrometers, L4 = 87-150 micrometers, L5 = 76-158 micrometers, and L6 = 253-638 micrometers. This variation reflects the crystallization of the chromite grains during parent body thermal metamorphism.We use this calibration to classify six fossil meteorites from the Middle Ordovician in Sweden as type 3 (or 4) to 6. The high flux of L chondrites at 470 Ma contained a range of petrographic types and may have had a higher proportion of lower petrographic type meteorites than are found in recent L chondrite falls. The fossil meteorites have in places preserved recognizable chondrule textures, including porphyritic olivine, barred olivine, and radiating pyroxene. A large relict clast and fusion crust have also been tentatively identified in one fossil meteorite. Apart from chromite, all of the original meteorite minerals have been replaced by carbonate (and sheet silicate and sulfate) during diagenesis within the limestone host. The preservation of chondrule definition has allowed us to measure the mean diameters of relict chondrules. The range (0.4-0.6 mm) is consistent with measurements made in the same way on recent L chondrites.
    • Petrographic comparison of refractory inclusions from different chemical groups of chondrites

      Lin, Y.; Kimura, M.; Miao, B.; Dai, D.; Monoi, A. (The Meteoritical Society, 2006-01-01)
      Twenty-four refractory inclusions (40-230 micrometers, with average of 86 +/- 40 micrometers) were found by X-ray mapping of 18 ordinary chondrites. All inclusions are heavily altered, consisting of finegrained feldspathoids, spinel, and Ca-pyroxene with minor ilmenite. The presence of feldspathoids and lack of melilite are due to alteration that took place under oxidizing conditions as indicated by FeO-ZnO-rich spinel and ilmenite. The pre-altered mineral assemblages are dominated by two types: one rich in melilite, referred to as type A-like, and the other rich in spinel, referred to as spinel-pyroxene inclusions. This study and previous data show similar type and size distributions of refractory inclusions in ordinary and enstatite chondrites. A survey of refractory inclusions was also conducted on Allende and Murchison in order to make unbiased comparison with their counterparts in other chondrites. The predominant inclusions are type A and spinel-pyroxene, with average sizes of 170 +/- 130 micrometers (except for two mm-sized inclusions) in Allende and 150 +/- 100 micrometers in Murchison. The relatively larger sizes are partially due to common conglomerating of smaller nodules in both chondrites. The survey reveals closely similar type and size distributions of refractory inclusions in various chondrites, consistent with our previous data of other carbonaceous chondrites. The petrographic observations suggest that refractory inclusions in various groups of chondrites had primarily formed under similar processes and conditions, and were transported to different chondrite-accreting regions. Heterogeneous abundance and distinct alteration assemblages of refractory inclusions from various chondrites could be contributed to transporting processes and secondary reactions under different conditions.
    • Petrographic studies of "fallout" suevite from outside the Bosumtwi impact structure, Ghana

      Boamah, D.; Koeberl, C. (The Meteoritical Society, 2006-01-01)
      Field studies and a shallow drilling program carried out in 1999 provided information about the thickness and distribution of suevite to the north of the Bosumtwi crater rim. Suevite occurrence there is known from an ~1.5 km^2 area; its thickness is less than or equal to 15 m. The present suevite distribution is likely the result of differential erosion and does not reflect the initial areal extent of continuous Bosumtwi ejecta deposits. Here we discuss the petrographic characteristics of drill core samples of melt-rich suevite. Macroscopic constituents of the suevites are melt bodies and crystalline and metasedimentary rock (granite, graywacke, phyllite, shale, schist, and possibly slate) clasts up to about 40 cm in size. Shock metamorphic effects in the clasts include multiple sets of planar deformation features (PDFs), diaplectic quartz and feldspar glasses, lechatelierite, and ballen quartz, besides biotite with kink bands. Basement rock clasts in the suevite represent all stages of shock metamorphism, ranging from samples without shock effects to completely shock-melted material that is indicative of shock pressures up to ~60 GPa.
    • Petrographic studies of the impact melts from Meteor Crater, Arizona, USA

      Hörz, F.; Mittlefehldt, D. W.; See, T. H.; Galindo, C. (The Meteoritical Society, 2002-01-01)
      We investigated the ballistically dispersed melts from Meteor Crater, Arizona, USA to determine the stratigraphic extent of its melt zone from the compositional relationship of melts and target rocks. Most melt particles are crystallized, hydrated, and oxidized; pristine glasses are rare. Hydration and oxidation occurred at ambient temperatures long after the impact. The preserved glasses are generally clear and texturally homogeneous, but unlike typical impact melts, they have unusually heterogeneous compositions, both within individual particles and from sample to sample. For example, the average SiO2 for individual particles ranges from 43 to 65%. The projectile content is unusually high and it is distributed bimodally, with specific samples containing either 5-10% or 20-30% FeO. These compositional heterogeneities most likely reflect the high carbonate content of the target rocks and the release of copious CO2 that dispersed the melts, thereby terminating melt flow and mixing. The high projectile content and the CO2 depleted residue of purely sedimentary rocks produced mafic melts that crystallized fine-grained olivine and pyroxene. The melts fall into three compositional groups reflecting variable proportions of the major target formations, Moenkopi, Kaibab, and Coconino. Least-square mixing calculations revealed one group to contain 55% Moenkopi, 40% quartz-rich, upper Kaibab, and 5% meteorite, suggesting a source depth of <30 m from the pre-impact surface. The other two melt groups have higher contents of meteorite (15-20%) and Kaibab (50-70%) and contain more SiO2 than average Kaibab. The additional quartz may have been derived from Coconino or the upper Kaibab, implying melt depths >90 m or <30 m, respectively. Additional studies, especially hydrocode calculations, are needed to better understand the source depth of these melts and their exceptionally high projectile content.
    • Petrographic, X-ray diffraction, and electron spin resonance analysis of deformed calcite: Meteor Crater, Arizona

      Burt, J. B.; Pope, M. C.; Watkinson, A. J. (The Meteoritical Society, 2005-01-01)
      Calcite crystals within the Kaibab limestone in Meteor Crater, Arizona, are examined to understand how calcite is deformed during a meteorite impact. The Kaibab limestone is a silty finegrained and fossiliferous dolomudstone and the calcite crystals occur as replaced evaporite nodules with impact-induced twinning. Twinning in the calcite is variable with deformational regimes based on abundances of crystals with twins and twin densities within crystals. The twins are similar to those that are seen in low tectonically deformed regimes. Low levels of shock are inferred from minor peak broadening of the X-ray diffraction patterns (XRD) of the calcite crystals. In addition, electron spin resonance (ESR) spectroscopy data also indicates low shock levels (<3.0 GPa). Quantitative shock pressures and correlation between the XRD and ESR results are poor due to the inferred low shock levels in conjunction with the analytical error associated in calculation of the shock pressures.
    • Petrography and geochemistry of five new Apollo 16 mare basalts and evidence for post-basin deposition of basaltic material at the site

      Zeigler, Ryan A.; Korotev, Randy L.; Haskin, Larry A.; Jolliff, Bradley L.; Gillis, Jeffrey J. (The Meteoritical Society, 2006-01-01)
      We present the petrography and geochemistry of five 2-4 mm basalt fragments from the Apollo 16 regolith. These fragments are 1) a high-Ti vitrophyric basalt compositionally similar to Apollo 17 high-Ti mare basalts, 2) a very high-Ti vitrophyric basalt compositionally similar to Apollos 12 and 14 red-black pyroclastic glass, 3) a coarsely crystalline high-Al basalt compositionally similar to group 5 Apollo 14 high-Al mare basalts, 4) a very low-Ti (VLT) crystalline basalt compositionally similar to Luna 24 VLT basalts, and 5) a VLT basaltic glass fragment compositionally similar to Apollo 17 VLT basalts. High-Ti basalt has been reported previously at the Apollo 16 site; the other basalt types have not been reported previously. As there are no known cryptomaria or pyroclastic deposits in the highlands near the Apollo 16 site (ruling out a local origin), and scant evidence for basaltic material in the Apollo 16 ancient regolith breccias or Apollo 16 soils collected near North Ray Crater (ruling out a basin ejecta origin), we infer that the basaltic material in the Apollo 16 regolith originated in maria near the Apollo 16 site and was transported laterally to the site by small- to medium-sized post-basin impacts. On the basis of TiO2 concentrations derived from the Clementine UVVIS data, Mare Tranquillitatis (~300 km north) is the most likely source for the high-Ti basaltic material at the Apollo 16 site (craters Ross, Arago, Dionysius, Maskelyne, Moltke, Sosigenes, Schmidt), Mare Nectaris/Sinus Asperitatis (~220 km east) is the most likely source for the low-Ti and VLT basaltic material (craters Theophilus, Madler, Torricelli), and a large regional pyroclastic deposit near Mare Vaporum (600 km northwest) is the most likely source region for pyroclastic material (although no source craters are apparent in the region).
    • Petrography and geochemistry of the LaPaz Icefield basaltic lunar meteorite and source crater pairing with Northwest Africa 032

      Zeigler, R. A.; Korotev, R. L.; Jolliff, B. L.; Haskin, L. A. (The Meteoritical Society, 2005-01-01)
      We report on the bulk composition and petrography of four new basaltic meteorites found in AntarcticaLAP (LaPaz Icefield) 02205, LAP 02224, LAP 02226, and LAP 02436--and compare the LAP meteorites to other lunar mare basalts. The LAP meteorites are coarse-grained (up to 1.5 mm), subophitic low-Ti basalts composed predominantly of pyroxene and plagioclase, with minor amounts of olivine, ilmenite, and a groundmass dominated by fayalite and cristobalite. All of our observations and results support the hypothesis that the LAP stones are mutually paired with each other. In detail, the geochemistry of LAP is unlike those of any previously studied lunar basalt except lunar meteorite NWA (Northwest Africa) 032. The similarities between LAP and NWA 032 are so strong that the two meteorites are almost certainly source crater paired and could be two different samples of a single basalt flow. Petrogenetic modeling suggests that the parent melt of LAP (and NWA 032) is generally similar to Apollo 15 low-Ti, yellow picritic glass beads, and that the source region for LAP comes from a similar region of the lunar mantle as previously analyzed lunar basalts.
    • Petrography and mineral chemistry of the anhydrous component of the Tagish Lake carbonaceous chondrite

      Simon, S. B.; Grossman, L. (The Meteoritical Society, 2003-01-01)
      Most studies of Tagish Lake have considered features that were either strongly affected by or formed during the extensive hydrous alteration experienced by this meteorite. This has led to some ambiguity as to whether Tagish Lake should be classified a CI, a CM, or something else. Unlike previous workers, we have focused upon the primary, anhydrous component of Tagish Lake, recovered through freeze-thaw disaggregation and density separation and located by thin section mapping. We found many features in common with CMs that are not observed in CIs. In addition to the presence of chondrules and refractory forsterite (which distinguish Tagish Lake from the CIs), we found hibonite-bearing refractory inclusions, spinel-rich inclusions, forsterite aggregates, Cr-, Al-rich spinel, and accretionary mantles on many clasts, which clearly establishes a strong link between Tagish Lake and the CM chondrites. The compositions of isolated olivine crystals in Tagish Lake are also like those found in CMs. We conclude that the anhydrous inclusion population of Tagish Lake was, originally, very much like that of the known CM chondrites and that the inclusions in Tagish Lake are heavily altered, more so than even those in Mighei, which are more heavily altered than those in Murchison.