• Experimental study on the collisional disruption of porous gypsum spheres

      Okamoto, C.; Arakawa, M. (The Meteoritical Society, 2009-01-01)
      In order to study the catastrophic disruption of porous bodies such as asteroids and planetesimals, we conducted several impact experiments using porous gypsum spheres (porosity: 50%). We investigated the fragment mass and velocity of disrupted gypsum spheres over a wide range of specific energies from 3 x 10^3 J/kg to 5 x 10^4 J/kg. We compared the largest fragment mass (ml/Mt) and the antipodal velocity (Va) of gypsum with those of non-porous materials such as basalt and ice. The results showed that the impact strength of gypsum was notably higher than that of the non-porous bodies; however, the fragment velocity of gypsum was slower than that of the non-porous bodies. This was because the micro-pores dispersed in the gypsum spheres caused a rapid attenuation of shock pressure in them. From these results, we expect that the collisional disruption of porous bodies could be significantly different from that of non-porous bodies.
    • The impact origin of Eunomia and Themis families

      Leliwa-Kopystyński, J.; Burchell, M. J.; Włodarczyk, I. (The Meteoritical Society, 2009-01-01)
      Criteria for finding asteroid families (Zappala et al. 1995) are applied to a large (205,770 member) data set of asteroid orbital elements. The cases of the Eunomia and Themis families are considered as examples. This is combined with the cratering criteria for catastrophic disruption of small bodies in the solar system (Leliwa-Kopystyński et al. 2008). We find that the Eunomia parent body itself was not catastrophically disrupted in the family-generating impact event; after impact, the current body contains as much as 70% of its primordial mass. However, by contrast with Eunomia, the present mass of 24 Themis is only about 21% of that of its primordial body. Limits are placed on the sizes of the impactors in both examples, and for the case of Eunomia, the radius of the just sub-critical crater (which may be present on 15 Eunomia) is predicted as 58 km.