Phreatic Water Quality Assessment and Associated Hydrogeochemical Processes in an Irrigated Region Along the Upper Yellow River, Northwestern China
Affiliation
Univ Arizona, Dept Hydrol & Atmospher SciIssue Date
2020-02-10Keywords
groundwater qualityhydrogeochemical processes
water-rock interaction
water quality index
Yellow River irrigated areas
Metadata
Show full item recordPublisher
MDPICitation
Liu, F.; Zhao, Z.; Yang, L.; Ma, Y.; Li, B.; Gong, L.; Liu, H. Phreatic Water Quality Assessment and Associated Hydrogeochemical Processes in an Irrigated Region Along the Upper Yellow River, Northwestern China. Water 2020, 12, 463.Journal
WATERRights
Copyright © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
Groundwater resources are playing an increasingly vital role in water supply for domestic and irrigation purposes in the Yinchuan Plain, along with the reduction in water transfer from the Yellow River. This study aimed to identify the current status of phreatic water quality and associated hydrogeochemical processes in an irrigated region along the upper Yellow River. A total of 78 water samples were collected in September 2018 for chemical analysis. Results showed that the phreatic water was excellent or good in most areas west of the Yellow River, while it was poor or very poor quality in some places east of the Yellow River. The nitrate contamination is particularly severe in the pluvial-alluvial plain, relating to the localized fine-grained zone with low permeability. Most samples had no sodium hazard but had magnesium hazard. Additionally, the overall evolutionary trend of the phreatic water showed the transformation of Ca-Mg-HCO3 into Na-Cl-SO4 type. Rock weathering and evaporation jointly predominate the evolution of phreatic water chemistry. The main geochemical processes involve the dissolution/precipitation of gypsum, halite, dolomite. and calcite, along with the cation exchange. Insights from this work have important implications for groundwater sustainable management in such irrigated regions along the upper Yellow River.Note
Open access journalISSN
2073-4441Version
Final published versionae974a485f413a2113503eed53cd6c53
10.3390/w12020463
Scopus Count
Collections
Except where otherwise noted, this item's license is described as Copyright © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).