• Bulk mineralogy and three-dimensional structures of individual Stardust particles deduced from synchrotron X-ray diffraction and microtomography analysis

      Nakamura, T.; Tsuchiyama, A.; Akaki, T.; Uesugi, K.; Nakano, T.; Takeuchi, A.; Suzuki, Y.; Noguchi, T. (The Meteoritical Society, 2008-01-01)
      During preliminary examination of particles released from 81P/Wild 2 short-period comet, we analyzed 28 particles by nondestructive means, high-sensitive X-ray diffraction and high-resolution X-ray tomography, in order to characterize bulk mineralogy and three-dimensional structures of individual particles. The analyses were performed at synchrotron facilities, KEK and SPring-8 in Japan. Twenty-eight particles from 5 to 25 micrometers in size, including 25 particles from Track 35 and 3 particles from Track 44, were first analyzed by X-ray diffraction and then 4 out of 28 particles were analyzed by X-ray tomography. All particles are classified into two groups based on silicate crystallinity: crystalline type and amorphous-rich type. The abundance of the former is approximately 10% of the particles investigated. Crystalline type shows very sharp reflections of olivine and low-Ca pyroxene, while amorphous-rich type shows no or very weak silicate reflections, suggesting that silicates are mostly amorphous. Broad reflections of Fe sulfides and Fe silicides are detected from most of amorphous-rich type particles. Subsequent tomography analysis revealed that the crystalline type is non-porous material consisting of coarse silicate crystals larger than 1 micrometer in size, while the amorphous-rich type is very porous aggregates with amorphous silicates and small Fe sulfide and Fe metallic grains. All characteristics of amorphousrich type particles indicate that most of them are melted and rapidly solidified during capture in the silica aerogel. On the other hand, the crystalline type is indigenous cometary particle formed through high-temperature heating episodes that have taken place prior to formation of comet Wild 2. One of the crystalline-type particles (C2054,0,35,6,0) consists of Mg-rich olivine, pyroxene, and kamacite and exhibits porphyritic or poikilitic texture very similar to chondrules.
    • Characterization of carbon- and nitrogen-rich particle fragments captured from comet 81P/Wild 2

      Gallien, J.-P.; Khodja, H.; Herzog, G. F.; Taylor, S.; Koepsell, E.; Daghlian, C. P.; Flynn, G. J.; Sitnitsky, I.; Lanzirotti, A.; Sutton, S. R.; et al. (The Meteoritical Society, 2008-01-01)
      We studied three Stardust fragments with infrared spectroscopy to characterize organic matter; with synchrotron-induced X-ray fluorescence to determine Fe contents and certain elemental ratios to iron; with scanning electron microscopy (SEM) to image sample morphology and to detect semiquantitatively Mg, Al, Si, Ca, and Fe; and with nuclear reaction analysis (NRA) to measure degrees C, N, O, and Si. A fourth fragment was analyzed by SEM only. Fragment C2054,0,35,21 from track 35 (hereafter C21) is extremely rich in degrees C and contains appreciable concentrations of Mg, Al, and Ca, but little Fe. Fragments C2054,0,35,23 (C23), C2044,0,41 (C41), and C2054,0,35,51,0 (C51), from tracks 35, 41, and 35, respectively, consist largely but not exclusively of aerogel. C23 contains Mg and finely dispersed S, but little Al, Ca or Fe. Pooled CI-normalized elemental ratios for C21, C23, and C41 are as follows: Ti/Fe, 5.0; Cr/Fe, 0.84; Mn/Fe, 0.97; Ni/Fe, 2.4; and Zn/Fe, 31. The enrichments in Ti and Zn may be related to the presence of aerogel. Minimum weight percentages of degrees C and N estimated without correcting for the presence of aerogel are 30 and 0.7 for C21; 2.8 and 0.2 for C23; 1.2 and 0.14 for C41. After corrections for the presence of aerogel containing 1.4 wt% degrees C and 0.02 wt% N, the corresponding results are 37 and 0.85 for C21; and 10 and 1 for C23; and ~1 and ~1, for C41 (The results for C41 have large uncertainties). These weight percentages are larger than or comparable to values for carbonaceous meteorites. degrees C/N atomic ratios without/without aerogel corrections are 51/51 for C21, 17/11 for C23, and 10/~1 for C41. Within the uncertainties these values are within the range for carbonaceous meteorites.
    • Quantitative organic and light-element analysis of comet 81P/Wild 2 particles using C-, N-, and O-μ-XANES

      Cody, G. D.; Ade, H.; Alexander, C. M. O'D.; Araki, T.; Butterworth, A.; Fleckenstein, H.; Flynn, G.; Gilles, M. K.; Jacobsen, C.; Kilcoyne, A. L. D.; et al. (The Meteoritical Society, 2008-01-01)
      Synchrotron-based soft X-ray micro-analysis was performed on particles extracted from the Stardust aerogel collector in order to obtain detailed organic functional group information on any organic solids captured as part of the Principal Examination suite of analyses for samples from comet 81P/Wild 2. It is observed that cometary organic carbon captured in aerogel is present in a number of different manifestations and often intimately associated with silicates. Carbon X-ray absorption near edge structure (XANES) spectra reveal considerable chemical complexity in all of the organic particles studied so far. Universally, the comet 81P/Wild 2 organic particles contain low concentrations of aromatic and/or olefinic carbon relative to aliphatic and heteroatom-containing functional groups, e.g., amide, carboxyl, and alcohol/ethers. N-XANES confirms the presence and assignments of these functional groups. In general, the XANES data record considerable chemical complexity across the range of organic samples currently analyzed. The atomic ratios, N/C and O/C, derived from XANES data reveal a wide range in heteroatom content; in all cases these elemental ratios are higher than that of primitive meteoritic organic matter. The wide range in chemistry, both in elemental abundances and specific organic functional groups, suggests that the comet 81P/Wild 2 organic solids may have multiple origins.
    • Recovering the elemental composition of comet Wild 2 dust in five Stardust impact tracks and terminal particles in aerogel

      Ishii, H. A.; Brennan, S.; Bradley, J. P.; Luening, K.; Ignatyev, K.; Pianetta, P. (The Meteoritical Society, 2008-01-01)
      The elemental (non-volatile) composition of five Stardust impact tracks and terminal particles left from capture of comet 81P/Wild 2 dust were mapped in a synchrotron X-ray scanning microprobe with full fluorescence spectra at each pixel. Because aerogel includes background levels of several elements of interest, we employ a novel "dual threshold" approach to discriminate against background contaminants: an upper threshold, above which a spectrum contains cometary material plus aerogel and a lower threshold below which it contains only aerogel. The difference between normalized cometary-plus-background and background-only spectra is attributable to cometary material. The few spectra in-between are discarded since misallocation is detrimental: cometary material incorrectly placed in the background spectrum is later subtracted from the cometary spectrum, doubling the loss of reportable cometary material. This approach improves accuracy of composition quantification. We present the refined whole impact track and terminal particle elemental abundances for the five impact tracks. One track shows mass increases in Cr and Mn (1.4x), Cu, As and K (2x), Zn (4x), and total mass (13%) by dual thresholds compared to a single threshold. Major elements Fe and Ni are not significantly affected. The additional Cr arises from cometary material containing little Fe. We exclude Au intermixed with cometary material because it is found to be a localized surface contaminant carried by comet dust into an impact track. The dual threshold technique can be used in other situations where elements of interest in a small sample embedded in a matrix are also present in the matrix itself.
    • TOF-SIMS analysis of cometary matter in Stardust aerogel tracks

      Stephan, T.; Rost, D.; Vicenzi, E. P.; Bullock, E. S.; MacPherson, G. J.; Westphal, A. J.; Snead, C. J.; Flynn, G. J.; Sandford, S. A.; Zolensky, M. E. (The Meteoritical Society, 2008-01-01)
      Cometary matter in aerogel samples from the Stardust mission was investigated with TOF-SIMS for its elemental and organic composition. While single grains >1 micrometer are highly variable in their chemical composition, nanometer-scale material found in the wall of one track has within a factor of 1.22 bulk CI chondritic element ratios relative to Fe for Na, Mg, Al, Ti, Cr, Mn, and Co. Compared to CI, a depletion in Ca by a factor of four and an enrichment in Ni by a factor of two was observed. These results seem to confirm recent reports of a CI-like bulk composition of Wild 2. The analysis of organic compounds in aerogel samples is complicated by the presence of contaminants in the capture medium. However, polycyclic aromatic hydrocarbons that could possibly be attributed to the comet were observed.
    • TOF-SIMS analysis of cometary particles extracted from Stardust aerogel

      Stephan, T.; Flynn, G. J.; Sandford, S. A.; Zolensky, M. E. (The Meteoritical Society, 2008-01-01)
      Sections of seven cometary fragments extracted from the aerogel collector flown on the Stardust mission to comet 81P/Wild 2 were investigated with TOF-SIMS. These grains showed a rather heterogeneous chemical and mineralogical composition on a submicrometer scale. However, their average chemical composition is close to bulk CI chondritic values, which is consistent with analyses of numerous Stardust samples using various techniques. As a result, the TOF-SIMS analyses support the conclusion that Wild 2 has a CI-like bulk composition. The cometary particles resemble anhydrous chondritic porous interplanetary dust particles, which have previously been suggested to originate from comets. For one of the fragments, polycyclic aromatic hydrocarbons that could possibly be attributed to the comet were observed.