• Characteristics of cometary dust tracks in Stardust aerogel and laboratory calibrations

      Burchell, M. J.; Fairey, S. A. J.; Wozniakiewicz, P.; Brownlee, D. E.; Hörz, F.; Kearsley, A. T.; See, T. H.; Tsou, P.; Westphal, A.; Green, S. F.; et al. (The Meteoritical Society, 2008-01-01)
      The cometary tray of the NASA Stardust spacecraft’s aerogel collector was examined to study the dust captured during the 2004 flyby of comet 81P/Wild 2. An optical scan of the entire collector surface revealed 256 impact features in the aerogel (width >100 micrometers). Twenty aerogel blocks (out of a total of 132) were removed from the collector tray for a higher resolution optical scan and 186 tracks were observed (track length >50 micrometers and width >8 micrometers). The impact features were classified into three types based on their morphology. Laboratory calibrations were conducted that reproduced all three types. This work suggests that the cometary dust consisted of some cohesive, relatively strong particles as well as particles with a more friable or low cohesion matrix containing smaller strong grains. The calibrations also permitted a particle size distribution to be estimated for the cometary dust. We estimate that approximately 1200 particles bigger than 1 micrometer struck the aerogel. The cumulative size distribution of the captured particles was obtained and compared with observations made by active dust detectors during the encounter. At large sizes (>20 micrometers) all measures of the dust are compatible, but at micrometer scales and smaller discrepancies exist between the various measurement systems that may reflect structure in the dust flux (streams, clusters etc.) along with some possible instrument effects.
    • Discovery of non-random spatial distribution of impacts in the Stardust cometary collector

      Westphal, A. J.; Bastien, R. K.; Borg, J.; Bridges, J.; Brownlee, D. E.; Burchell, M. J.; Cheng, A. F.; Clark, B. C.; Djouadi, Z.; Floss, C.; et al. (The Meteoritical Society, 2008-01-01)
      We report the discovery that impacts in the Stardust cometary collector are not distributed randomly in the collecting media, but appear to be clustered on scales smaller than ~10 cm. We also report the discovery of at least two populations of oblique tracks. We evaluate several hypotheses that could explain the observations. No hypothesis is consistent with all the observations, but the preponderance of evidence points toward at least one impact on the central Whipple shield of the spacecraft as the origin of both clustering and low-angle oblique tracks. High-angle oblique tracks unambiguously originate from a non-cometary impact on the spacecraft bus just forward of the collector.