• Combined micro-Raman, micro-infrared, and field emission scanning electron microscope analyses of comet 81P/Wild 2 particles collected by Stardust

      Rotundi, A.; Baratta, G. A.; Borg, J.; Brucato, J. R.; Busemann, H.; Colangeli, L.; D'Hendecourt, L.; Djouadi, Z.; Ferrini, G.; Franchi, I. A.; et al. (The Meteoritical Society, 2008-01-01)
      We report combined micro-infrared, micro-Raman, and field emission scanning electron microscope (FESEM) analyses of particles collected by the Stardust spacecraft during its flyby of comet 81P/Wild 2 on 2 January 2004 and successfully returned back to Earth on 15 January 2006. We present mid-infrared (IR) spectra of six of these particles. The CH2/CH3 ratios inferred from the infrared data are greater than those seen in organics in the diffuse interstellar medium, possibly indicating the presence of longer or less branched aliphatic chains. The micro-Raman data offer insights into the state of the order of the carbonaceous component present in the particles. Raman parameters for most of the particles span a similar range to that observed in interplanetary dust particles (IDPs) and the most primitive meteorites. Both the IR and Raman data imply the presence of a very labile carbonaceous component. Hydrated silicates may be present in two particles of Track 35, one of which may also contain carbonates, but further investigations with other techniques need to be performed to confirm these findings. In some cases, the analyses are difficult to interpret because of the presence of compressed aerogel mixed with the grains.
    • Transmission electron microscopy of cometary residues from micron-sized craters in the Stardust Al foils

      Leroux, H.; Stroud, R. M.; Dai, Z. R.; Graham, G. A.; Troadec, D.; Bradley, J. P.; Teslich, N.; Borg, J.; Kearsley, A. T.; Hörz, F. (The Meteoritical Society, 2008-01-01)
      We report transmission electron microscopy (TEM) investigations of micro-craters that originated from hypervelocity impacts of comet 81P/Wild 2 dust particles on the aluminium foil of the Stardust collector. The craters were selected by scanning electron microscopy (SEM) and then prepared by focused ion beam (FIB) milling techniques in order to provide electron transparent crosssections for TEM studies. The crater residues contain both amorphous and crystalline materials in varying proportions and compositions. The amorphous component is interpreted as resulting from shock melting during the impact and the crystalline phases as relict minerals. The latter show evidence for shock metamorphism. Based on the residue morphology and the compositional variation, the impacting particles are inferred to have been dominated by mixtures of submicron olivine, pyroxene and Fe sulfide grains, in agreement with prior results of relatively coarse-grained mineral assemblages in the aerogel collector.