• Coupled effects of impact and orogeny: Is the marine Lockne crater, Sweden, pristine?

      Kenkmann, T.; Kiebach, F.; Rosenau, M.; Raschke, U.; Pigowske, A.; Mittelhaus, K.; Eue, D. (The Meteoritical Society, 2007-01-01)
      Our current understanding of marine-impact cratering processes is partly inferred from the geological structure of the Lockne crater. We present results of a mapping campaign and structural data indicating that this crater is not pristine. In the western part of the crater, pre-impact, impact, and post-impact rocks are incorporated in Caledonian thrust slices and are subjected to folding and faulting. A nappe outlier in the central crater depression is a relic of the Caledonian nappe cover that reached a thickness of more than 5 km. The overthrusted crater is gently deformed. Strike of strata and trend of fold axes deviate from standard Caledonian directions (northeast-southwest). Radially oriented crater depressions, which were previously regarded as marine resurge gullies formed when resurging seawater erosively cut through the crater brim, are interpreted to be open synclines in which resurge deposits were better preserved. The presence of the impact structure influenced orogenesis due to morphological and lithological anomalies of the crater: i) a raised crater brim zone acted as an obstacle during nappe propagation, (ii) the occurrence of a central crater depression caused downward sagging of nappes, and (iii) the lack of an appropriate detachment horizon (alum shale) within the crater led to an enhanced mechanical coupling and internal deformation of the nappe and the overthrusted foreland. Preliminary results of 3-Danalogue experiments suggest that a circular high-friction zone representing the crater locally hinders nappe propagation and initiates a circumferentially striking ramp fault that delineates the crater. Crustal shortening is also partitioned into the crater basement and decreases laterally outward. Deformation of the foreland affected the geometry of the detachment and could be associated with the activation of a deeper detachment horizon beneath the crater. Strain gradients both vertically and horizontally result in non-plane strain deformation in the vicinity of the crater. The strain tensors in the hanging and foot walls may deviate up to 90 degrees from each other and rotated by up to 45 degrees with respect to the standard regional orientation. The observed deflection of strata and fold axes within the Lockne crater area as revealed by field mapping is in agreement with the pattern of strain partitioning shown in the analogue models.
    • Facies distribution of post-impact sediments in the Ordovician Lockne and Tvaren impact craters: Indications for unique impact-generated environments

      Frisk, Å. M.; Ormö, J. (The Meteoritical Society, 2007-01-01)
      The Lockne and Tvären craters formed in the Late Ordovician Baltoscandian epicontinental sea. Both craters demonstrate similarities concerning near-synchronous age, target seabed, and succeeding resurge deposits; however, the water depths at the impact sites and the sizes of the craters were not alike. The post-impact sedimentary succession of carbonates, i.e., the Dalby Limestone, deposited on top of the resurge sediments in the two craters, is nevertheless similar. At least three main facies of the Dalby Limestone were established in the Lockne crater, depending on sea-floor topography, location with respect to the crater, and local water currents. The dominating nodular argillaceous facies, showing low values of inorganic carbon (IC), was distributed foremost in the deeper and quiet areas of the crater floor and depressions. At the crater rim, consisting of crushed crystalline basement ejecta, a rim facies with a reef-like fauna was established, most certainly due to topographical highs and substrate-derived nutrients. Between these facies are occurrences of a relatively thick-bedded calcilutite rich in cephalopods (cephalopod facies). In Tvären, the lower part of the succession consists of an analogous argillaceous facies, also showing similar low IC values as in Lockne, followed by calcareous mudstones with an increase of IC. Occasionally biocalcarenites with a distinctive fauna occur in the Tvären succession, probably originating as detritus from a facies developed on the rim. They are evident as peaks in IC and lows in organic carbon (Corg). The fauna in these biocalcarenites corresponds very well with those of erratic boulders derived from Tvären; moreover, they correspond to the rim facies of Lockne except for the inclusion of photosynthesizing algae, indicating shallower water at Tvären than Lockne. Consequently, we suggest equivalent distribution patterns for the carbonates of the Dalby Limestone in Lockne and Tvären.
    • Sedimentological analysis of resurge deposits at the Lockne and Tvären craters: Clues to flow dynamics

      Ormö, J.; Sturkell, E.; Lindström, M. (The Meteoritical Society, 2007-01-01)
      The Lockne and Tvären craters formed about 455 million years ago in an epicontinental sea where seawater and mainly limestones covered a crystalline basement. The target water depth for Tvären (apparent basement crater diameter D = 2 km) was probably not over 150 m, and for Lockne (D = 7.5 km) recent best-fit numerical simulations suggest the target water depth of 500-700 m. Lockne has crystalline ejecta that partly cover an outer crater (14 km diameter) apparent in the target sediments. Tvären is eroded with only the crater infill preserved. We have line-logged cores through the resurge deposits within the craters in order to analyze the resurge flow. The focus was clast lithology, frequencies, and size sorting. We divide the resurge into resurge proper, with water and debris shooting into the crater and ultimately rising into a central water plume, anti-resurge, with flow outward from the collapsing plume, and oscillating resurge (not covered by the line-logging due to methodological reasons), with decreasing flow in diverse directions. At Lockne, the deposit of the resurge proper is coarse and moderately sorted, whereas the anti-resurge deposit is fining upwards and better sorted. The Tvären crater has a smoothly fining-up section deposited by the resurge proper and may lack anti-resurge deposits. At Lockne, the content of crystalline relative to limestone clasts generally decreases upwards, which is the opposite of Tvären. This may be a consequence of factors such as crater size (i.e., complex versus simple) and the relative target water depth. The mean grain size (i.e., the mean phi value per meter, phi) and standard deviation, i.e., size sorting (sigma) for both craters, can be expressed by the equation sigma = 0.60phi 1.25.