• Impact metamorphism of CaCO3-bearing sandstones at the Haughton structure, Canada

      Osinski, G. R. (The Meteoritical Society, 2007-01-01)
      Impact-metamorphosed CaCO3-bearing sandstones at the Haughton structure have been divided into 6 classes, based to a large extent on a previous classification developed for sandstones at Meteor Crater. Class 1a sandstones (<3 GPa) display crude shatter cones, but no other petrographic indications of shock. At pressures of 3 to 5.5 GPa (class 1b), porosity is destroyed and well-developed shatter cones occur. Class 2 rocks display planar deformation features (PDFs) and are characterized by a "jigsaw" texture produced by rotation and shear at quartz grain boundaries. Calcite shows an increase in the density of mechanical twins and undergoes micro-brecciation in class 1 and 2 sandstones. Class 3 samples display multiple sets of PDFs and widespread development of diaplectic glass, toasted quartz, and symplectic intergrowths of quartz, diaplectic glass, coesite. Textural evidence, such as the intermingling of silicate glasses and calcite and the presence of flow textures, indicates that calcite in class 3 sandstones has undergone melting. This constrains the onset of melting of calcite in the Haughton sandstones to >10 <20 GPa. At higher pressures, the original texture of the sandstone is lost, which is associated with major development of vesicular SiO2 glass or lechatelierite. Class 5 rocks (>30 GPa) consist almost entirely of lechatelierite. A new class of shocked sandstones (class 6) consists of SiO2-rich melt that recrystallized to microcrystalline quartz. Calcite within class 4 to 6 sandstones also underwent melting and is preserved as globules and euhedral crystals within SiO2 phases, demonstrating the importance of impact melting, and not decomposition, in these CaCO3-bearing sandstones.
    • New records of Ediacaran Acraman ejecta in drillholes from the Stuart Shelf and Officer Basin, South Australia

      Hill, A. C.; Haines, P. W.; Grey, K.; Willman, S. (The Meteoritical Society, 2007-01-01)
      New occurrences of the Acraman impact ejecta layer were recently discovered in two South Australian drillholes, SCYW-79 1a (Stuart Shelf) and Munta 1 (Officer Basin) using lithostratigraphy, acritarch biostratigraphy, carbon isotope stratigraphy, and biomarker anomalies to predict the stratigraphic position. The ejecta layer is conspicuous because it consists of pink, sandsized, angular fragments of volcanic rock distributed along the bedding plane surface of green marine siltstone. In SCYW-79 1a it forms a layer 5 mm thick; in Munta 1 the ejecta layer is thin and discontinuous because of its distance (~550 km) from the impact structure. Palynological, biomarker, and carbon isotope anomalies can now be shown to coincide with the ejecta layer in SCYW-79 1a and Munta 1 suggesting the Acraman impact event may have had far reaching influences on the rapidly evolving Ediacaran biological and geochemical cycles.
    • Proceedings of the Workshop on Impact Craters as Indicators for Planetary Environmental Evolution and Astrobiology

      Ormö, J.; Deutsch, A. (The Meteoritical Society, 2007-01-01)
      Proceedings of the Workshop on Impact Craters as Indicators for Planetary Environmental Evolution and Astrobiology