ABOUT THIS COLLECTION

Meteoritics & Planetary Science is an international monthly journal of the Meteoritical Society—a scholarly organization promoting research and education in planetary science. Topics include the origin and history of the solar system, planets and natural satellites, interplanetary dust and interstellar medium, lunar samples, meteors and meteorites, asteroids, comets, craters, and tektites.

Meteoritics & Planetary Science was first published in 1935 under the title Contributions of the Society for Research on Meteorites. In 1947, the publication became known as Contributions of the Meteoritical Society and continued through 1951. From 1953 to 1995, the publication was known as Meteoritics, and in 1996, the journal's name was changed to Meteoritics & Planetary Science or MAPS. The journal was not published in 1952 and from 1957 to 1964.

This archive provides access to Meteoritics & Planetary Science Volumes 37-44 (2002-2009).

Visit Wiley Online Library for new and retrospective Meteoritics & Planetary Science content (1935-present).

ISSN: 1086-9379

QUESTIONS?

Contact the University Libraries Journal Team with questions.

Recent Submissions

  • Ernst Florens Friedrich Chaldni (1756-1827) and the origins of modern meteorite research

    Marvin, Ursula B. (The Meteoritical Society, 2007-01-01)
    In 1794, Ernst F. F. Chladni published a 63-page book, Über den Ursprung der von Pallasgefundenen und anderer ihr änlicher Eisenmassen und über einige damit in Verbindung stehendeNaturerscheinungen, in which he proposed that meteor-stones and iron masses enter the atmosphere from cosmic space and form fireballs as they plunge to Earth. These ideas violated two strongly held contemporary beliefs: 1) fragments of rock and metal do not fall from the sky, and 2) no small bodies exist in space beyond the Moon. From the beginning, Chladni was severely criticized for basing his hypotheses on historical eyewitness reports of falls, which others regarded as folk tales, and for taking gross liberties with the laws of physics. Ten years later, the study of fallen stones and irons was established as a valid field of investigation. Today, some scholars credit Chladni with founding meteoritics as a science; others regard his contributions as scarcely worthy of mention. Writings by his contemporaries suggest that Chladnis book alone would not have led to changes of prevailing theories; thus, he narrowly escaped the fate of those scientists who propose valid hypotheses prematurely. However, between 1794 and 1798, four falls of stones were witnessed and widely publicized. There followed a series of epoch-making analyses of fallen stones and native irons by the chemist Edward degrees C. Howard and the mineralogist Jacques-Louis de Bournon. They showed that all the stones were much alike in texture and composition but significantly different from the Earths known crustal rocks. Of primary importance was Howards discovery of nickel in the irons and the metal grains of the stones. This linked the two as belonging to the same natural phenomenon. These chemical results, published in February 1802, persuaded some of the leading scientists in England, France, and Germany that bodies do fall from the sky. Within a few months, chemists in France reported similar results and a new field of study was inaugurated internationally, although opposition lingered on until April 1803, when nearly 3,000 stones fell at LAigle in Normandy and transformed the last skeptics into believers. Chladni immediately received full credit for his hypothesis of falls, but decades passed before his linking of falling bodies with fireballs received general acceptance. His hypothesis of their origin in cosmic space met with strong resistance from those who argued that stones formed within the Earths atmosphere or were ejected by lunar volcanoes. After 1860, when both of these hypotheses were abandoned, there followed a century of debate between proponents of an interstellar versus a planetary origin. Not until the 1950s did conclusive evidence of their elliptical orbits establish meteorite parent bodies as members of the solar system. Thus, nearly 200 years passed before the questions of origin that Chladni raised finally were resolved.