• An international and multidisciplinary drilling project into a young complex impact structure: The 2004 ICDP Bosumtwi Crater Drilling Project—An overview

      Koeberl, C.; Milkereit, B.; Overpeck, J. T.; Scholz, C. A.; Amoako, P Y. O.; Boamah, D.; Danuor, S.; Karp, T.; Kueck, J.; Hecky, R. E.; et al. (The Meteoritical Society, 2007-01-01)
      The Bosumtwi impact crater in Ghana, arguably the best-preserved complex young impact structure known on Earth, displays a pronounced rim and is almost completely filled by Lake Bosumtwi, a hydrologically closed basin. It is the source crater of the Ivory Coast tektites. The structure was excavated in 2.1-2.2 Gyr old metasediments and metavolcanics of the Birimian Supergroup. A drilling project was conceived that would combine two major scientific interests in this crater: 1) to obtain a complete paleoenvironmental record from the time of crater formation about one million years ago, at a near-equatorial location in Africa for which very few data are available so far, and 2) to obtain a complete record of impactites at the central uplift and in the crater moat, for ground truthing and comparison with other structures. Within the framework of an international and multidisciplinary drilling project led by the International Continental Scientific Drilling Program (ICDP), 16 drill cores were obtained from June to October 2004 at six locations within Lake Bosumtwi, which is 8.5 km in diameter. The 14 sediment cores are currently being investigated for paleoenvironmental indicators. The two impactite cores LB-07A and LB-08A were drilled into the deepest section of the annular moat (540 m) and the flank of the central uplift (450 m), respectively. They are the main subject of this special issue of Meteoritics Planetary Science, which represents the first detailed presentations of results from the deep drilling into the Bosumtwi impactite sequence. Drilling progressed in both cases through the impact breccia layer into fractured bedrock. LB-07A comprises lithic (in the uppermost part) and suevitic impact breccias with appreciable amounts of impact melt fragments. The lithic clast content is dominated by graywacke, besides various metapelites, quartzite, and a carbonate target component. Shock deformation in the form of quartz grains with planar microdeformations is abundant. First chemical results indicate a number of suevite samples that are strongly enriched in siderophile elements and Mg, but the presence of a definite meteoritic component in these samples cannot be confirmed due to high indigenous values. Core LB-08A comprises suevitic breccia in the uppermost part, followed with depth by a thick sequence of graywacke-dominated metasediment with suevite and a few granitoid dike intercalations. It is assumed that the metasediment package represents bedrock intersected in the flank of the central uplift. Both 7A and 8A suevite intersections differ from suevites outside of the northern crater rim. Deep drilling results confirmed the gross structure of the crater as imaged by the pre-drilling seismic surveys. Borehole geophysical studies conducted in the two boreholes confirmed the low seismic velocities for the post-impact sediments (less than 1800 m/s) and the impactites (2600-3300 m/s). The impactites exhibit very high porosities (up to 30 vol%), which has important implications for mechanical rock stability. The statistical analysis of the velocities and densities reveals a seismically transparent impactite sequence (free of prominent internal reflections). Petrophysical core analyses provide no support for the presence of a homogeneous magnetic unit (= melt breccia) within the center of the structure. Borehole vector magnetic data point to a patchy distribution of highly magnetic rocks within the impactite sequence. The lack of a coherent melt sheet, or indeed of any significant amounts of melt rock in the crater fill, is in contrast to expectations from modeling and pre-drilling geophysics, and presents an interesting problem for comparative studies and requires re-evaluation of existing data from other terrestrial impact craters, as well as modeling parameters.
    • Characterization of the log lithology of cores LB-07A and LB-08A of the Bosumtwi impact structure by using the anisotropy of magnetic susceptibility

      Schell, C.; Schleifer, N.; Elbra, T. (The Meteoritical Society, 2007-01-01)
      Petrophysical data are commonly used for the discrimination of different lithologies, as the variation in mineralogy, texture, and porosity is accompanied by varying physical properties. A special field of investigation is the analysis of the directional dependence (anisotropy) of the petrophysical properties, which can provide further information on the characteristics of the lithologies, due to the fact that this parameter is different in the various rock-forming and rockchanging processes, e.g., deformation or sedimentation. To characterize the rocks in drill cores LB-07A and LB-08A, which were drilled into the deep crater moat and central uplift of the Bosumtwi impact structure, Ghana, samples were taken for the study of petrophysical properties. In the present work the magnetic properties of these samples were determined in the laboratory. The results are discussed in relation to the various lithologies represented by this sample suite. The shape and degree of magnetic anisotropy, in combination with the magnetic susceptibility, proved useful in distinguishing between the different lithologies present in the drill cores (polymict lithic breccia, suevite, shale component, and meta-graywacke). It was possible to correlate layers of high (shale component), ntermediate (graywacke, polymict lithic breccia), and low (suevite) anisotropy degree with the lithostratigraphic sequences determined for cores LB-07A and LB-08A. The shape of the anisotropy showed that foliation is most dominant within the shale component, whereas lineation is more pronounced in the meta-graywacke and polymict lithic breccia. An overall increase of the anisotropy degree was observed from core LB-07A towards core LB-08A. Thus magnetic anisotropy data provide a useful contribution towards an improved petrophysical characterization of the lithostratigraphic sequences in drillcores from the Bosumtwi impact structure.
    • Clast fabric examination of impact-generated breccias, borehole LB-07A, Bosumtwi, Ghana

      Morris, W. A.; Ugalde, H.; Clark, C.; Miles, B. (The Meteoritical Society, 2007-01-01)
      An impact event always creates a cloud of ejecta generated through excavation of the target. Subsequent in-filling of the void by crater-fill deposits provides a record of post-impact processes. Full-core digital photographic scans of core segments from borehole LB-07 in the Bosumtwi impact crater provide a complete record of the in-fill process. The shape, orientation, and size of clasts within the impact breccia were measured using a best-fit ellipsoid approach. Clast size and variance, together with clast orientation data, suggest the impact breccias at Bosumtwi can be divided into a simple two-fold subdivision that loosely agrees with the lithological zonation of a lower monomict breccia overlain by a polymict breccia. The lower unit is characterized by a uniform and finer-grained clast size together with a uniform flat-lying clast orientation. The boundary between the two zones is defined by a sharp increase in clast size. The upper zone shows an average increase in clast size with decreasing depth, but full grain size spectrum together with increased grain size deviation suggest that this is a result of mixing between two populations with different grain size distribution. The main population of clasts shows an incremental decrease of clast size with decreasing depth. The upper zone also contains weakly defined shallowly dipping clast fabrics, which may be suggestive of horizontal transport or deposition onto an inclined surface.
    • Drill core LB-08A, Bosumtwi impact structure, Ghana: Geochemistry of fallback breccia and basement samples from the central uplift

      Ferrière, L.; Koeberl, C.; Reimold, W. U.; Mader, D. (The Meteoritical Society, 2007-01-01)
      The 1.07 Myr old Bosumtwi impact structure in Ghana (West Africa), which measures 10.5 km in diameter and is largely filled by Lake Bosumtwi, is associated with one of four currently known tektite strewn fields. Two boreholes were drilled to acquire hard-rock samples of the deep crater moat and from the flank of the central uplift (LB-07A and LB-08A, respectively) during a recent ICDP-sponsored drilling project. Here we present results of major and trace element analysis of 112 samples from drill core LB-08A. This core, which was recovered between 235.6 and 451.33 m depth below lake level, contains polymict lithic breccia intercalated with suevite, which overlies fractured/brecciated metasediment. The basement is dominated by meta-graywacke (from fine-grained to gritty), but also includes some phyllite and slate, as well as suevite dikelets and a few units of a distinct light greenish gray, medium-grained meta-graywacke. Most of the variations of the major and trace element abundances in the different lithologies result from the initial compositional variations of the various target rock types, as well as from aqueous alteration processes, which have undeniably affected the different rocks. Suevite from core LB-08A (fallback suevite) and fallout suevite samples (from outside the northern crater rim) display some differences in major (mainly in MgO, CaO, and Na2O contents) and minor (mainly Cr and Ni) element abundances that could be related to the higher degree of alteration of fallback suevites, but also result from differences in the clast populations of the two suevite populations. For example, granite clasts are present in fallout suevite but not in fallback breccia, and calcite clasts are present in fallback breccia and not in fallout suevite. Chondrite-normalized rare earth element abundance patterns for polymict impact breccia and basement samples are very similar to each other. Siderophile element contents in the impact breccias are not significantly different from those of the metasediments, or compared to target rocks from outside the crater rim. So far, no evidence for a meteoritic component has been detected in polymict impact breccias during this study, in agreement with previous work.
    • Drill core LB-08A, Bosumtwi impact structure, Ghana: Petrographic and shock metamorphic studies of material from the central uplift

      Ferrière, L.; Koeberl, C.; Reimold, W. U.; Mader, D. (The Meteoritical Society, 2007-01-01)
      During a recent drilling project sponsored by the International Continental Scientific Drilling Progam (ICDP), two boreholes (LB-07A and LB-08A) were drilled into the crater fill of the Bosumtwi impact structure and the underlying basement, into the deep crater moat and the outer flank of the central uplift, respectively. The Bosumtwi impact structure in Ghana (West Africa), which is 10.5 km in diameter and 1.07 Myr old, is largely filled by Lake Bosumtwi. Here we present the lithostratigraphy of drill core LB-08A (recovered between 235.6 and 451.33 m depth below lake level) as well as the first mineralogical and petrographic observations of samples from this core. This drill core consists of approximately 25 m of polymict, clast-supported lithic breccia intercalated with suevite, which overlies fractured/brecciated metasediment that displays a large variation in lithology and grain size. The lithologies present in the central uplift are metasediments composed dominantly of fine-grained to gritty meta-graywacke, phyllite, and slate, as well as suevite and polymict lithic impact breccia. The suevites, principally present between 235.6 and 240.5 m and between 257.6 and 262.2 m, display a fine-grained fragmental matrix (about 39 to 45 vol%) and a variety of lithic and mineral clasts that include meta-graywacke, phyllite, slate, quartzite, carbon-rich organic shale, and calcite, as well as melt particles, fractured quartz, unshocked quartz, unshocked feldspar, quartz with planar deformation features (PDFs), diaplectic quartz glass, mica, epidote, sphene, and opaque minerals). The crater-fill suevite contains calcite clasts but no granite clasts, in contrast to suevite from outside the northern crater rim. The presence of melt particles in suevite samples from the uppermost 25 meters of the core and in suevite dikelets in the basement is an indicator of shock pressures exceeding 45 GPa. Quartz grains present in suevite and polymict lithic impact breccia abundantly display 1 to (rarely) 4 sets of PDFs per grain. The shock pressures recorded by the PDFs in quartz grains in the polymict impact breccia range from 10 to ~30 GPa. We also observed a decrease of the abundance of shocked quartz grains in the brecciated basement with increasing depth. Meta-graywacke samples from the basement are heterogeneously shocked, with shock pressures locally ranging up to 2530 GPa. Suevites from this borehole show a lower proportion of melt particles and diaplectic quartz glass than suevites from outside the northern crater rim (fallback impact breccia), as well as a lack of ballen quartz, which is present in the external breccias. Similar variations of melt-particle abundance and shockmetamorphic grade between impact-breccia deposits within the crater and fallout impact breccia outside the crater have been observed at the Ries impact structure, Germany.
    • Geochemistry of impactites and basement lithologies from ICDP borehole LB-07A, Bosumtwi impact structure, Ghana

      Coney, L.; Reimold, W. U.; Gibson, R. L.; Koeberl, C. (The Meteoritical Society, 2007-01-01)
      In 2004, a drilling project by the International Continental Scientific Drilling Program (ICDP) at the Bosumtwi impact crater, Ghana (1.07 Myr old and 10.5 km in diameter), obtained drill core LB-07A, which sampled impactites and underlying metasediments in the crater moat surrounding the small central uplift of the structure. The LB-07A core consists of three sequences: 82.29 m of an upper impactite sequence of alternating polymict lithic and suevitic impact breccias overlying 54.88 m of so-called lower impactite of monomict impact breccia with several suevite intercalations, and 74.53 m of meta-graywacke and altered shale of the basement, also containing a number of suevite intercalations. Major- and trace-element characteristics of all three sequences have been determined to investigate breccia formation and the role of the respective basement lithologies therein. Compositions of polymict impact breccias of the crater fill revealed by core LB-07A are compared with the compositions of the Ivory Coast tektites and the fallout suevites. The impactites of the LB-07A borehole appear well homogenized with respect to the silicate component, and little change in the ranges of many major- and trace-element differences is seen along the length of the borehole (except for Fe2O3, MgO, and CaO contents). Much scatter is observed for a number of elements, and in many cases this increases with depth. It is proposed that any variability in composition is likely the function of clast population differences (i.e., also of relatively small sample sizes). No systematic compositional difference between polymict lithic and suevitic impact breccias is evident. An indication of carbonate enrichment due to hydrothermal alteration is observed in samples from all lithologies. The impactites of the borehole generally show intermediate compositions to previously defined target rocks. The fallout suevites have comparable major element abundances, except for relatively lower MgO contents. The Ivory Coast tektites are generally similar in composition to the LB-07A suevites, but broader ranges in MgO and CaO contents are observed for the LB-07A suevites.
    • Hydrothermal alteration in the Bosumtwi impact structure: Evidence from 2M1-muscovite, alteration veins, and fracture fillings

      Petersen, M. T.; Newsom, H. E.; Nelson, M. J.; Moore, D. M. (The Meteoritical Society, 2007-01-01)
      Drill-core samples from the Bosumtwi impact structure (1.07 Myr old and 10.5 km in diameter) in Ghana exhibit mineralogical evidence for post-impact hydrothermal alteration. Nine samples of drill core obtained through the 2004 International Continental Scientific Drilling Project (ICDP) were studied, including an uppermost fallback layer overlying impactite breccias, and partly deformed massive meta-graywacke bedrock. The petrographic study revealed alteration veins containing secondary sericitic muscovite (comparable to 2M1-muscovite) crosscutting original bedding in meta-graywacke and forming a matrix between clasts in impactite breccias. X-ray diffraction (XRD) shows that these impactite samples are rich in 2M1-muscovite, consistent with post-impact fluid deposition and alteration. Optical analysis indicates the presence of a pre-impact stratiform chlorite in meta-graywacke samples and a secondary alteration chlorite occurring in all samples. Secondary illite was detected in upper impactites of drill core LB-08A and samples containing accretionary lapilli. The lower temperature constraint for the hydrothermal event is given by 2M1-muscovite, secondary chlorite, and illite, all of which form at temperatures greater than 280 degrees C. An absence of recrystallization of quartz and feldspar indicates an upper temperature constraint below 900 degrees C. The presence of alteration materials associated with fractures and veins in the uppermost impactites of drill cores LB-07A and LB-08A indicates that a post-impact hydrothermal system was present in and adjacent to the central uplift portion of the Bosumtwi impact structure. A sample containing accretionary lapilli obtained from drill core LB-05A exhibits limited evidence that hydrothermal processes were more widespread within the impactites on the crater floor.
    • Impactites as a random medium—Using variations in physical properties to assess heterogeneity within the Bosumtwi meteorite impact crater

      L'Heureux, E.; Milkereit, B. (The Meteoritical Society, 2007-01-01)
      The recent drilling of the Bosumtwi impact structure, Ghana, has provided a unique opportunity to study the petrophysical properties of a young, well-preserved impact crater. The damage induced by impact results in extensive fracturing and mixing of target materials. We discuss here a means of using sonic velocity and density logs from two boreholes through the Bosumtwi crater fill and basement to estimate the degree of heterogeneity and fracturing within the impacted target, in order to understand the discrepancy between the large impedances derived from the log data and the nonreflective zone of impactites observed in seismic sections. Based on an analysis of the stochastic fluctuations in the log data, the Bosumtwi impactites are characterized by vertical scale lengths of 23 m. From the resolution of the seismic data over the crater, horizontal scale lengths are estimated at <12 m. The impactites therefore fall within the quasi‐homogeneous scattering regime, i.e., seismic energy will propagate through the medium with little disruption. Scale lengths as small as these are observed in the fractured basement rocks of impact structures, whereas non‐impact related crystalline environments are characterized by scale lengths an order of magnitude larger. Assuming that the high‐frequency fluctuations observed in the log data are more sensitive to fracture distribution than petrology, this suggests that the small scale lengths observed within impact structures are characteristic of impact‐induced damage, and could be used to estimate the extent of fracturing undergone by the rocks at any depth below an impact structure.
    • In situ seismic measurements in borehole LB-08A in the Bosumtwi impact structure, Ghana: Preliminary interpretation

      Schmitt, D. R.; Milkereit, B.; Karp, T.; Scholz, C.; Danuor, S.; Meillieux, D.; Welz, M. (The Meteoritical Society, 2007-01-01)
      In order to assist in the interpretation of previous seismic refraction and reflection surveys, a vertical seismic profile was acquired in the Lake Bosumtwi (Ghana) hard-rock core hole LB-08A. No seismic reflections are seen in the up-going wave field obtained, and this observation is consistent with the lack of reflectivity observed in the corresponding 2-D surface seismic profile obtained in earlier studies. Direct down-going P-waves were found both in the cased sediment column from a depth of 73 m to 239 m below the lake surface and in the open-hole hard rock section from a depth of 239 m to 451 m of LB-08A. Analysis of the observed travel times indicates a nearly constant P-wave velocity of 1520 m/s through the soft lacustrine sediments. In the hard-rock, however, the P-wave velocity rapidly increases by nearly 30% from 2600 m/s to 3340 m/s. These values are in good agreement with the gross velocity structure obtained in the earlier joint inversion of seismic reflection and refraction data. These values are low relative to those expected for the metasedimentary protoliths, an observation that has been made at other young impact structures of similar size. The low velocities, together with the fact that they increase so rapidly, is suggestive of a decreasing density of fractures and microcracks with depth. Consequently, the seismic velocity trend may provide a proxy measure of damage, and hence, the decay of the shock pressure from the impact point. Validation of this requires additional detailed studies of the porosity structure in the core.
    • Integrated 3-D model from gravity and petrophysical data at the Bosumtwi impact structure, Ghana

      Ugalde, H.; Danuor, S. K.; Milkereit, B. (The Meteoritical Society, 2007-01-01)
      The Bosumtwi impact structure of central Ghana was drilled in 2004 as part of the International Continental Scientific Drilling Program (ICDP). A vast amount of geoscience data is available from the pre-site surveys and the actual drilling phase. A 3-D gravity model was constructed and calibrated with the available data from the two ICDP boreholes, LB-07A and LB-08A. The 3-D gravity model results agree well with both the sediment thickness and size of the central uplift revealed by previously collected seismic data, and with the petrophysical data from the LB-08A and LB-07A core materials and the two borehole logs. Furthermore, the model exhibits lateral density variations across the structure and refines the results from previous 2.5-D modeling. An important new element of the 3-D model is that the thickness of the intervals comprising polymict lithic impact breccia and suevite, monomict lithic breccia and fractured basement is much smaller than that predicted by numerical modeling.
    • Lithological and structural characteristics of the Lake Bosumtwi impact crater, Ghana: Interpretation of acoustic televiewer images

      Hunze, S.; Wonik, T. (The Meteoritical Society, 2007-01-01)
      Bosumtwi is a very well-preserved 1.07 Myr old, complex terrestrial impact crater locatedin south-central Ghana, West Africa. The impact structure has a diameter of about 10.5 km and wasformed in 2.1–2.2 Gyr Precambrian metasedimentary and metavolcanic rocks. Drilling and logging was carried out during the Lake Bosumtwi Drilling Project (BCDP) which was supported by the International Continental Scientific Drilling Program (ICDP). One of the aims of this project is to achieve detailed information on the subsurface structure and crater fill of one of the best preserved large young impact structures. We interpreted the wireline logs and televiewer images. The physical properties including shallow resistivity, p-wave velocity, magnetic susceptibility, and borehole diameter of the breccia differ significantly from those of the meta-graywackes and slate/phyllites. Fractures observed in the televiewer images are interpreted to determine their characteristic structural features. The fracture dip angles are steep (50–70 degrees) and the two main dip directions are southeast and southwest. Most fractures observed in the borehole are open. The indicated main stress direction is north-south.
    • Lithostratigraphic and petrographic analysis of ICDP drill core LB-07A, Bosumtwi impact structure, Ghana

      Coney, L.; Gibson, R. L.; Reimold, W. U.; Koeberl, C. (The Meteoritical Society, 2007-01-01)
      Lithostratigraphic and petrographic studies of drill core samples from the 545.08 m deep International Continental Scientific Drilling Program (ICDP) borehole LB-07A in the Bosumtwi impact structure revealed two sequences of impactites below the post-impact crater sediments and above coherent basement rock. The upper impactites (333.38-415.67 m depth) comprise an alternating sequence of suevite and lithic impact breccias. The lower impactite sequence (415.67-470.55 m depth) consists essentially of monomict impact breccia formed from meta-graywacke with minor shale, as well as two narrow injections of suevite, which differ from the suevites of the upper impactites in color and intensity of shock metamorphism of the clasts. The basement rock (470.55-545.08 m depth) is composed of lower greenschist-facies metapelites (shale, schist and minor phyllite), meta-graywacke, and minor meta-sandstone, as well as interlaminated quartzite and calcite layers. The basement also contains a number of suevite dikelets that are interpreted as injection veins, as well as a single occurrence of granophyric-textured rock, tentatively interpreted as a hydrothermally altered granitic intrusion likely related to the regional pre-impact granitoid complexes. Impact melt fragments are not as prevalent in LB-07A suevite as in the fallout suevite facies around the northern crater rim; on average, 3.6 vol% of melt fragments is seen in the upper suevites and up to 18 vol% in the lower suevite occurrences. Shock deformation features observed in the suevites and polymict lithic breccias include planar deformation features in quartz (1 to 3 sets), rare diaplectic quartz glass, and very rare diaplectic feldspar glass. Notably, no ballen quartz, which is abundant in the fallout suevites, has been found in the within-crater impact breccias. An overall slight increase in the degree of shock metamorphism occurs with depth in the impactites, but considerably lower shock degrees are seen in the suevites of the basement rocks, which show similar features to each other. The bulk of the suevite in LB-07A appears to have been derived from the <35 GPa shock zone of the transient crater.
    • Petrography and shock-related remagnetization of pyrrhotite in drill cores from the Bosumtwi Impact Crater Drilling Project, Ghana

      Kontny, A.; Elbra, T.; Just, J.; Pesonen, L. J.; Schleicher, A. M.; Zolk, J. (The Meteoritical Society, 2007-01-01)
      Rock magnetic and magnetic mineralogy data are presented from the International Continental Scientific Drilling Program (ICDP) drill cores LB-07A and LB-08A of the Bosumtwi impact structure in order to understand the magnetic behavior of impact and target lithologies and their impact-related remagnetization mechanism. Basic data for the interpretation of the magnetic anomaly patterns and the magnetic borehole measurements as well as for new magnetic modeling are provided. Magnetic susceptibility (150-500 10^)-6) SI) and natural remanent magnetization (10^(-3)-10^(-1) A/m) are generally weak, but locally higher values up to 10.6 x 10^(-3) SI and 43 A/m occur. Sixty-three percent of the investigated rock specimens show Q values above 1 indicating that remanence clearly dominates over induced magnetization, which is a typical feature of impact structures. Ferrimagnetic pyrrhotite is the main magnetite phase, which occurs besides minor magnetite and a magnetic phase with a Curie temperature between 330 and 350 degrees C, interpreted as anomalous pyrrhotite. Coercive forces are between 20 and 40 mT. Brecciation and fracturing of pyrrhotite is a common feature confirming its pre-impact origin. Grain sizes of pyrrhotite show a large variation but the numerous stress-induced nanostructures observable by transmission electron microscopy (TEM) are assumed to behave as single-domain grains. We suggest that the drilled rocks lost their pre-shock remanence memory during the shock event and acquired a new, stable remanence during shock-induced grain size reduction. The observed brittle microstructures indicate temperatures not higher than 250 degrees C, which is below the Curie temperature of ferrimagnetic pyrrhotite (310 degrees C).
    • Petrography, geochemistry, and alteration of country rocks from the Bosumtwi impact structure, Ghana

      Karikari, F.; Ferrière, L.; Koeberl, C.; Reimold, W. U.; Mader, D. (The Meteoritical Society, 2007-01-01)
      Samples of the country rocks that likely constituted the target rocks at the 1.07 Myr old Bosumtwi impact structure in Ghana, West Africa, collected outside of the crater rim in the northern and southern parts of the structure, were studied for their petrographic characteristics and analyzed for their major- and trace-element compositions. The country rocks, mainly meta-graywacke, shale, and phyllite of the Early Proterozoic Birimian Supergroup and some granites of similar age, are characterized by two generations of alteration. A pre-impact hydrothermal alteration, often along shear zones, is characterized by new growth of secondary minerals, such as chlorite, sericite, sulfides, and quartz, or replacement of some primary minerals, such as plagioclase and biotite, by secondary sericite and chlorite. A late, argillic alteration, mostly associated with the suevites, is characterized by alteration of the melt/glass clasts in the groundmass of suevites to phyllosilicates. Suevite, which occurs in restricted locations to the north and to the south-southwest of the crater rim, contains melt fragments, diaplectic quartz glass, ballen quartz, and clasts derived from the full variety of target rocks. No planar deformation features (PDFs) in quartz were found in the country rock samples, and only a few quartz grains in the suevite samples show PDFs, and in rare cases two sets of PDFs. Based on a total alkali element-silica (TAS) plot, the Bosumtwi granites have tonalitic to quartz-dioritic compositions. The Nb versus Y and Ta versus Yb discrimination plots show that these granites are of volcanic-arc tectonic provenance. Provenance studies of the metasedimentary rocks at the Bosumtwi crater have also indicated that the metasediments are volcanic-arc related. Compared to the average siderophile element contents of the upper continental crust, both country rocks and impact breccias of the Bosumtwi structure show elevated siderophile element contents. This, however, does not indicate the presence of an extraterrestrial component in Bosumtwi suevite, because the Birimian country rocks also have elevated siderophile element contents, which is thought to result from regional hydrothermal alteration that is also related to widespread sulfide and gold mineralization.
    • Petrophysical and paleomagnetic data of drill cores from the Bosumtwi impact structure, Ghana

      Elbra, T.; Kontny, A.; Pesonen, L. J.; Schleifer, N.; Schell, C. (The Meteoritical Society, 2007-01-01)
      Physical properties from rocks of the Bosumtwi impact structure, Ghana, Central Africa, are essential to understand the formation of the relatively young (1.07 Ma) and small (10.5 km) impact crater and to improve its geophysical modeling. Results of our petrophysical studies of deep drill cores LB-07A and LB-08A reveal distinct lithological patterns but no depth dependence. The most conspicuous difference between impactites and target lithologies are the lower bulk densities and significantly higher porosities of the suevite and lithic breccia units compared to meta-graywacke and metapelites of target lithologies. Magnetic susceptibility shows mostly paramagnetic values (200 x 500 10^(-6) SI) throughout the core, with an exception of a few metasediment samples, and correlates positively with natural remanent magnetization (NRM) and Q values. These data indicate that magnetic parameters are related to inhomogeneously distributed ferrimagnetic pyrrhotite. The paleomagnetic data reveals that the characteristic direction of NRM has shallow normal (in a few cases shallow reversed) polarity, which is in agreement with the Lower Jaramillo N-polarity chron direction, and is carried by ferrimagnetic pyrrhotite. However, our study has not revealed the expected high magnetization body required from previous magnetic modeling. Furthermore, the LB-07A and LB08-A drill cores did not show the predicted high content of melt in the rocks, requiring a new interpretation model for magnetic data.
    • Physical property measurements: ICDP boreholes LB-07A and LB-08A,Lake Bosumtwi impact structure, Ghana

      Morris, W. A.; Ugalde, H.; Clark, C. (The Meteoritical Society, 2007-01-01)
      Physical rock property measurements provide the primary constraints for any geological models hypothesized from geophysical observations. Previous geophysical models of the Bosumtwi impact structure hypothesized that a highly magnetic and dense impact-melt sheet might be the source of the observed magnetic anomalies. However, magnetic susceptibility and density measurements made on International Continental Scientific Drilling Program (ICDP) cores LB-07A and LB-08A from the interior of the Bosumtwi meteorite impact structure contain no evidence for that. Both density and magnetic susceptibility logs on both boreholes exhibit low-amplitude contrasts between the uppermost polymict lithic breccia and suevite, the intermediate monomict lithic breccia, and the lowermost bedrock. The depth extent of fracture-related density reduction is much greater at LB-08A than at LB-07A. A total magnetic intensity log from borehole LB-08A supports the suggestion that magnetic anomalies over Lake Bosumtwi are mainly sourced in undetected and/or covered bedrock intrusions, like the ones outcropping at the northeast and to the southwest of the lake.
    • Platinum group elements provide no indication of a meteoritic component in ICDP cores from the Bosumtwi crater, Ghana

      Goderis, S.; Tagle, R.; Schmitt, R. T.; Erzinger, J.; Claeys, Ph. (The Meteoritical Society, 2007-01-01)
      In an attempt to identify the type of projectile, 14 samples from the Bosumtwi crater in Ghana were analyzed for platinum group element (PGE) concentrations by nickel sulfide fire assay inductively coupled plasmamass spectrometry (ICP-MS). The majority of the samples come from the impactite material recovered by cores LB-07A and LB-08A, which were drilled by the International Continental Scientific Drilling program (ICDP). One sample originates from the fallback material found at the contact between the impactite and the overlying lake sediment in core LB-05B. No clear signature of a meteoritic contamination was identified in the 13 impactite samples. The target rock apparently dominates the PGE contribution in the impactites. These results agree with the PGE concentrations reported for the suevites collected at the crater rim and in other parts of the Bosumtwi ICDP cores. However, based on Cr and Os isotopic signatures, a meteoritic component could be present in the sample of fallback material, supporting the reports of the existence of meteoritic material in the Ivory Coast tektites. Further analyses of the fallback material from the Bosumtwi drill cores should confirm (or not) this first result.
    • Possible reasons of shock melt deficiency in the Bosumtwi drill cores

      Artemieva, N. (The Meteoritical Society, 2007-01-01)
      Pre-drilling numerical modeling of the Bosumtwi impact event predicted a 200 m thick coherent melt layer, as well as abundant highly shocked target material within the central part of the crater structure. However, these predictions are in disagreement with data from drill core obtained in 2004-2005. Here I provide a brief overview of previous results and discuss possible reasons behind melt deficiency, such as specific impact scenarios (low impact velocity and/or low impact angle), and specific target properties (different composition, high porosity, high content of volatiles). I conclude that the most likely explanation is the dispersion of impactites due to the vaporization of pore water, which was not included in the original numerical model.
    • Preface

      Koeberl, C.; Milkereit, B.; Reimold, W. U. (The Meteoritical Society, 2007-01-01)
    • Results of pre-drilling potential field measurements at the Bosumtwi crater

      Danuor, S. K.; Menyeh, A. (The Meteoritical Society, 2007-01-01)
      Gravity and magnetic measurements were carried out at the Bosumtwi crater to determine the geophysical signature of the crater. Land gravity data was acquired at 163 locations around the structure and on the shore of the lake. The separation between the gravity stations was 500 m for radial profiles, but 700-1000 m along roads and footpaths that ran parallel to the lakes shore. Additionally, a marine gravity survey was carried out along 14 north-south and 15 east-west profiles on the lake. Magnetic data was also acquired along 14 north-south profiles on the lake. In all marine surveys, the line spacing was 800 m, and navigation was provided by a Garmin 235 Echo Sounder/GPS. The gravity signature of the crater is characterized by a negative Bouguer anomaly with an amplitude of about 18 mgal. Using the seismic results as constraints, the gravity model obtained indicates the central uplift at a depth of 250 m. The negative anomaly is the contribution of the gravity deficiencies due to fractured and brecciated rocks in the rim area and below the crater floor, the impact breccias within the crater, and the sedimentary and water infilling of the lake. Magnetic modeling yielded a model for the causative body, which is located north of the central uplift: the model has a magnetic susceptibility of 0.03 S.I. and extends from a depth of 250 to 610 m. The causative bodies have been interpreted as impactites.