Meteoritics & Planetary Science is an international monthly journal of the Meteoritical Society—a scholarly organization promoting research and education in planetary science. Topics include the origin and history of the solar system, planets and natural satellites, interplanetary dust and interstellar medium, lunar samples, meteors and meteorites, asteroids, comets, craters, and tektites.

Meteoritics & Planetary Science was first published in 1935 under the title Contributions of the Society for Research on Meteorites. In 1947, the publication became known as Contributions of the Meteoritical Society and continued through 1951. From 1953 to 1995, the publication was known as Meteoritics, and in 1996, the journal's name was changed to Meteoritics & Planetary Science or MAPS. The journal was not published in 1952 and from 1957 to 1964.

This archive provides access to Meteoritics & Planetary Science Volumes 37-44 (2002-2009).

Visit Wiley Online Library for new and retrospective Meteoritics & Planetary Science content (1935-present).

ISSN: 1086-9379


Contact the University Libraries Journal Team with questions.

Recent Submissions

  • Erratum

    The Meteoritical Society, 2006-01-01
    Shock waves-Phenomenology, experimental, and numerial simulationi
  • The Sirente crater, Italy: Impact versus mud volcano origins

    Stoppa, Francesco (The Meteoritical Society, 2006-01-01)
    The Sirente crater is a circular structure with a diameter of 80 m. The rim deposit is an inverse-graded, matrix-supported breccia. Sedimentological features of the rim deposit suggest that the crater is not related to an explosion or violent mechanical displacement. The structure and texture of the deposit exhibit a primary sedimentary character. The rim deposits do not contain artifacts and do not show evidence of reworking. A multistage formation is reconstructed for the rim growth and associated deposits. The geometry and sedimentology of the deposits indicate that they were produced by the extrusion and accumulation of mudflow deposits. The dominant ejection mechanism was low mud fountains and the transport medium was water. Petrographic and geochemical evidence does not indicate any physical or cryptic trace of an extraterrestrial body.The most realistic agent that explains the observed effects is a rapid local emission of mud and/or water. Geological processes capable of producing these features include piping sinkholes or, more probably, "caldera"-type mud volcanoes, which may result from underground water-table perturbation and/or decompression of deep CO2/hydrocarbon gas reservoirs due to tectonic deformation or faulting activity during a seismic event. In both cases, the name "crater" for this geological form may be maintained, but there is no compelling evidence for an impact origin.In this paper, the scientific literature on the Sirente crater is reconsidered in the light of new morphological, sedimentological, geochemical, and archaeological data. A new mechanism is proposed involving mud-fountaining.
  • Stratigraphy and evolution of basalts in Mare Humorum and southeastern Procellarum

    Hackwill, Terence; Guest, John; Spudis, Paul (The Meteoritical Society, 2006-01-01)
    We have studied the mare basalts of Mare Humorum and southeastern Procellarum (30 degrees W-50 degrees W, 0 degrees-40 degrees S). One hundred and nine basaltic units have been identified from differences in their FeO wt% and TiO2 wt% content, and variations in crater densities. Crater counting and reference to isotopically dated Apollo samples have provided an age for 33 major units. Some evidence for three distinct periods of volcanic activity has been found. We found that the large unit in the middle of Mare Humorum is the oldest in the basin. This supports the suggestion that the oldest central unit sank causing the lithosphere to bend and create dykes through which lava flowed to produce the outer units. No evidence of a trend in FeO wt% and TiO2 wt% content against time is found within Mare Humorum. There appears to be no lateral trend of basalts in terms of FeO and TiO2 wt% over the entire area with time. An increase in FeO content with time is found in the 33 major units and there is some evidence for an increase in TiO2 in the same units. A correlation between FeO wt% and TiO2 wt% content is evident when all 109 units are compared. A notable feature of this correlation is a sharp increase in gradient of TiO2 wt% content when the FeO wt% content rises above about 17%.
  • Shock-metamorphosed zircon in terrestrial impact craters

    Wittmann, A.; Kenkmann, T.; Schmitt, R. T.; Stöffler, D. (The Meteoritical Society, 2006-01-01)
    To ascertain the progressive stages of shock metamorphism of zircon, samples from three well-studied impact craters were analyzed by optical microscopy, scanning electron microscopy (SEM), and Raman spectroscopy in thin section and grain separates. These samples are comprised of well-preserved, rapidly quenched impactites from the Ries crater, Germany, strongly annealed impactites from the Popigai crater, Siberia, and altered, variably quenched impactites from the Chicxulub crater, Mexico. The natural samples were compared with samples of experimentally shock-metamorphosed zircon. Below 20 GPa, zircon exhibits no distinct shock features. Above 20 GPa, optically resolvable planar microstructures occur together with the high-pressure polymorph reidite, which was only retained in the Ries samples. Decomposition of zircon to ZrO2 only occurs in shock stage IV melt fragments that were rapidly quenched. This is not only a result of post-shock temperatures in excess of ~1700 degrees C but could also be shock pressure-induced, which is indicated by possible relics of a high-pressure polymorph of ZrO2. However, ZrO2 was found to revert to zircon with a granular texture during devitrification of impact melts. Other granular textures represent recrystallized amorphous ZrSiO4 and reidite that reverted to zircon. This requires annealing temperatures >1100 degrees C. A systematic study of zircons from a continuous impactite sequence of the Chicxulub impact structure yields implications for the post-shock temperature history of suevite-like rocks until cooling below ~600 degees C.
  • The fall and recovery of the Tagish Lake meteorite

    Hildebrand, Alan R.; McCausland, Phil J. A.; Brown, Peter G.; Longstaffe, Fred J.; Russell, Sam D. J.; Tagliaferri, Edward; Wacker, John F.; Mazur, Michael J. (The Meteoritical Society, 2006-01-01)
    The Tagish Lake C2 (ungrouped) carbonaceous chondrite fall of January 18, 2000, delivered 10 kg of one of the most primitive and physically weak meteorites yet studied. In this paper, we report the detailed circumstances of the fall and the recovery of all documented Tagish Lake fragments from a strewnfield at least 16 km long and 3 to 4 km wide. Nearly 1 kg of "pristine" meteorites were collected one week after the fall before new snow covered the strewnfield; the majority of the recovered mass was collected during the spring melt. Ground eyewitnesses and a variety of instrument-recorded observations of the Tagish Lake fireball provide a refined estimate of the fireball trajectory. From its calculated orbit and its similarity to the remotely sensed properties of the D- and P-class asteroids, the Tagish Lake carbonaceous chondrite apparently represents these outer belt asteroids. The cosmogenic nuclide results and modeled production indicate a prefall radius of 2.1-2.4 m (corresponding to 60-90 tons) consistent with the observed fireball energy release. The bulk oxygen-isotope compositions plot just below the terrestrial fractionation line (TFL), following a trend similar to the CM meteorite mixing line. The bulk density of the Tagish Lake material (1.64 +/- 0.02 g/cm^3) is the same, within uncertainty, as the total bulk densities of several C-class and especially D- and P-class asteroids. The high microporosity of Tagish Lake samples (~40%) provides an obvious candidate material for the composition of low bulk density primitive asteroids.
  • Extraterrestrial chromite in Middle Ordovician marine limestone at Kinnekulle, southern Sweden—Traces of a major asteroid breakup event

    Schmitz, Birger; Häggström, Therese (The Meteoritical Society, 2006-01-01)
    The distribution of sediment-dispersed extraterrestrial chromite grains and other Cr-rich spinels (>63 micrometers) has been studied in Middle Ordovician Orthoceratite Limestone from two quarries at Kinnekulle, southern Sweden. In the Thorsberg quarry, an 3.2 m thick sequence of beds previously shown to be rich in fossil meteorites is also rich in sediment-dispersed extraterrestrial chromite grains. Typically, 1-3 grains are found per kilogram of limestone. In the nearby Hällekis quarry, the same beds show similarly high concentrations of extraterrestrial chromite grains, but in samples representing the 9 m downward continuation of the section exposed at this site, only 5 such grains were found in a total of 379 kg of limestone. The extraterrestrial (equilibrated ordinary chondritic) chromite grains can be readily distinguished by a homogeneous and characteristic major element chemistry, including 2.0-3.5 wt% TiO2 and stable V2O3 concentrations close to 0.7 wt%. Terrestrial Cr-rich spinels have a wide compositional range and co-exist with extraterrestrial chromite in some beds. These grains may be derived, for example, from mafic dykes exposed and weathered at the sea floor.Considering lithologic and stratigraphic aspects variations in sedimentation rate cannot explain the dramatic increase in extraterrestrial chromite seen in the upper part of the composite section studied. Instead, the difference may be primarily related to an increase in the ancient flux of extraterrestrial matter to Earth in connection with the disruption of the L chondrite parent body in the asteroid belt at about this time. The coexistence in some beds of high concentrations of chondritic chromite and terrestrial Cr-rich spinels, however, indicates that redistribution of heavy minerals on the sea floor, related to changes in sea level and sea-floor erosion and currents, must also be considered.
  • Stony meteorite characterization by non-destructive measurement of magnetic properties

    Smith, D. L.; Ernst, R. E.; Samson, C.; Herd, R. (The Meteoritical Society, 2006-01-01)
    Four parameters of low-field magnetic susceptibility (bulk value, frequency dependence, degree of anisotropy, and ellipsoid shape) have been determined for 321 stony meteorites from the National Collection of Canada. These parameters provide a basis for rapid, non-destructive, and accurate meteorite classification as each meteorite class tends to have a distinct range of values. Chondrites show a clear trend of increasing bulk susceptibility from LL to L to H to E within the 3.6 to 5.6 log-Chi (in 10^(-9) m^3/kg) range, reflecting increasing Fe-Ni metal and Fe-Ni sulfide content. Achondrite values range in log-Chi from 2.4 to 4.7 and primitive achondrites from 4.2 to 5.7. Frequency dependence is observed, using 19,000 Hz and 825 Hz, with variations in strength among meteorite classes and individual specimen dependence ranging from 1-25.6%. Degrees of anisotropy range from 1 to 53% with both oblate and prolate ellipsoids present. The aubrite class is marked by high degrees of anisotropy, low bulk magnetic susceptibility, and prolate fabric. Camel Donga is set apart from other eucrites, marked by higher bulk susceptibility, degree of anisotropy, and magnitude of oblate ellipsoid shape. The Shergotty, Nakhla, and Chassigny (SNC) meteorites show subclass distinction using frequency dependence and Chassigny is set apart with a relatively strong oblate fabric. The presence of both strong oblate and prolate fabrics among and within meteorite classes of chondritic and achondritic material points to a complex, multi-mechanism origin for anisotropy, more so than previously thought, and likely dominated by impact processes in the later stages of stony parent body formation.
  • Monte Carlo simulation of GCR neutron capture production of cosmogenic nuclides in stony meteorites and lunar surface

    Kollr, D.; Michel, R.; Masarik, J. (The Meteoritical Society, 2006-01-01)
    A purely physical model based on a Monte Carlo simulation of galactic cosmic ray (GCR) particle interaction with meteoroids is used to investigate neutron interactions down to thermal energies. Experimental and/or evaluated excitation functions are used to calculate neutron capture production rates as a function of the size of the meteoroid and the depth below its surface. Presented are the depth profiles of cosmogenic radionuclides 36Cl, 41Ca, 60Co, 59Ni, and 129I for meteoroid radii from 10 cm up to 500 cm and a 2-pi irradiation. Effects of bulk chemical composition on n-capture processes are studied and discussed for various chondritic and lunar compositions. The mean GCR particle flux over the last 300 ka was determined from the comparison of simulations with measured 41Ca activities in the Apollo 15 drill core. The determined value significantly differs from that obtained using equivalent models of spallation residue production.
  • Analysis and survival of amino acids in Martian regolith analogs

    Garry, James R. C.; ten Kate, Inge Loe; Martins, Zita; Nørnberg, Per; Ehrenfreund, Pascale (The Meteoritical Society, 2006-01-01)
    We have investigated the native amino acid composition of two analogs of Martian soil, JSC Mars-1 and Salten Skov. A Mars simulation chamber has been built and used to expose samples of these analogs to temperature and lighting conditions similar to those found at low latitudes on the Martian surface. The effects of the simulated conditions have been examined using high-performance liquid chromatography (HPLC). Exposure to energetic ultraviolet (UV) light in vacuum appears to cause a modest increase in the concentration of certain amino acids within the materials, which is interpreted as resulting from the degradation of microorganisms. The influence of low temperatures shows that the accretion of condensed water on the soils leads to the destruction of amino acids, supporting the idea that reactive chemical processes involving H2O are at work within the Martian soil. We discuss the influence of UV radiation, low temperatures, and gaseous CO2 on the intrinsic amino acid composition of Martian soil analogs and describe, with the help of a simple model, how these studies fit within the framework of life detection on Mars and the practical tasks of choosingand using Martian regolith analogs in planetary research.
  • Density, magnetic susceptibility, and the characterization of ordinary chondrite falls and showers

    Consolmagno, G. J.; Macke, R. J.; Rochette, P.; Britt, D. T.; Gattacceca, J. (The Meteoritical Society, 2006-01-01)
    Bulk and grain densities of 132 ordinary chondrites from the Vatican Observatory collection were measured and compared with their magnetic susceptibility (for the most part using previously measured values; ten new susceptibility measures were taken for this study). Grain density and magnetic susceptibility combined provide a reliable method of classifying un weathered ordinary chondrites. Unlike traditional chemical tests, this method is fast, nondestructive, and characterizes the whole rock, making it especially appropriate for surveying large collections. The system is less viable for finds; extensive weathering of metallic iron in an H chondrite can cause it to plot among L chondrites, while heavily weathered L chondrites plot among the LL group. This system has revealed outlier stones that may be misclassified meteorites or mislabeled samples; in every case where the magnetic susceptibility of a meteorite does not fit its putative classification, the grain density is also found to be in disagreement in a manner consistent with either severe weathering or misidentification. An analysis of stones from five showers shows that, excluding outliers, these samples tend to cluster tightly within their appropriate groups in a plot of grain versus magnetic susceptibility.
  • In situ identification, pairing, and classification of meteorites from Antarctica through magnetic susceptibility measurements

    Folco, L.; Rochette, P.; Gattacceca, J.; Perchiazzi, N. (The Meteoritical Society, 2006-01-01)
    We report on the effectiveness of using magnetic measurements in the search for meteorites on the Antarctic ice sheet, which is thus far the Earth's most productive terrain. Magnetic susceptibility measurements carried out with a pocket meter (SM30) during the 2003/04 PNRA meteorite collection expedition to northern Victoria Land (Antarctica) proved to be a rapid, sensitive, non-destructive means for the in situ identification, pairing, and classification of meteorites. In blue ice fields characterized by the presence of moraines and glacial drifts (e.g., Miller Butte, Roberts Butte, and Frontier Mountain), magnetic susceptibility measurements allowed discrimination of meteorites from abundant terrestrial stones that look like meteorites thanks to the relatively high magnetic susceptibility of the former with respect to terrestrial rocks. Comparative measurements helped identify 16 paired fragments found at Johannessen Nunataks, thereby reducing unnecessary duplication of laboratory analyses and statistical bias. Following classifications schemes developed by us in this and previous works, magnetic susceptibility measurements also helped classify stony meteorites directly in the field, thereby providing a means for selecting samples with higher research priority. A magnetic gradiometer capable of detecting perturbations in the Earth's magnetic field induced by the presence of meteorites was an efficient tool for locating meteorites buried in snow along the downwind margin of the Frontier Mountain blue ice field. Based on these results, we believe that magnetic sensors should constitute an additional payload for robotic search for meteorites on the Antarctic ice sheet and, by extension, on the surface of Mars where meteorite accumulations are predicted by theoretical works. Lastly, magnetic susceptibility data was successfully used to cross-check the later petrographic classification of the 123 recovered meteorites, allowing the detection of misclassified or peculiar specimens.