• Chicxulub central crater structure: Initial results from physical property measurements and combined velocity and gravity modeling

      Vermeesch, P. M.; Morgan, J. V. (The Meteoritical Society, 2004-01-01)
      The Chicxulub crater in Mexico is a nearly pristine example of a large impact crater. Its slow burial has left the central impact basin intact, within which there is an apparently uneroded topographic peak ring. Its burial, however, means that we must rely on drill holes and geophysical data to interpret the crater form. Interpretations of crater structures using geophysical data are often guided by numerical modeling and observations at other large terrestrial craters. However, such endeavors are hindered by uncertainties in current numerical models and the lack of any obvious progressive change in structure with increasing crater size. For this reason, proposed structural models across Chicxulub remain divergent, particularly within the central crater region, where the deepest well is only ~1.6 km deep. The shape and precise location of the stratigraphic uplift are disputed. The spatial extent and distribution of the allogenic impact breccias and melt rocks remain unknown, as do the lithological nature of the peak ring and the mechanism for its formation. The objective of our research is to provide a well-constrained 3D structural and lithological model across the central region of the Chicxulub crater that is consistent with combined geophysical data sets and drill core samples. With this in mind, we present initial physical property measurements made on 18 core samples from the Yaxcopoil-1 (Yax-1) drill hole between 400 and 1500 m deep and present a new density model that is in agreement with both the 3D velocity and gravity data. Future collation of petrophysical and geochemical data from Yax-1 core, as well as further seismic surveys and drilling, will allow us to calibrate our geophysical models--assigning a suite of physical properties to each lithology. An accurate 3D model of Chicxulub is critical to our understanding of large craters and to the constraining of the environmental effects of this impact.
    • Chicxulub: Testing for post-impact hydrothermal input into the Tertiary ocean

      Rowe, A. J.; Wilkinson, J. J.; Coles, B. J.; Morgan, J. V. (The Meteoritical Society, 2004-01-01)
      Studies of large terrestrial impact craters indicate that post-impact hydrothermal activity is a likely consequence of the crustal deformation and heating induced by such events. In the case of the Chicxulub basin, where marine conditions were re-established soon after the impact, significant fluxing of seawater through the crust and hydrothermal venting into the water column might be anticipated. We have carried out geochemical analyses of Tertiary carbonate sediments within the Yaxcopoil-1 (Yax-1) drill hole to test for evidence of such post-impact hydrothermal circulation. Hydrothermal activity is most likely to be found close to thick layers of melt rock inside the collapsed transient cavity, and it is estimated that Yax-1 is located ~20 km outside this cavity. Consequently, the most likely signature of hydrothermal venting into the water column would be geochemical anomalies attributable to fallout of suspended particulate matter from a submarine hydrothermal plume. Samples of Tertiary biomicrites from depths of 794.01 to 777.02 m have high concentrations of manganese, iron, phosphorous, titanium, and aluminium and low iron/manganese ratios relative to samples from higher in the stratigraphic succession. This geochemical anomaly decreases fairly systematically between 793.13 m and 777.02 m, above which an abrupt change in geochemistry is observed. A mass balance calculation suggests that the anomaly is unlikely to be the result of a decreasing detrital input to the carbonate sediments and the nature of the element enrichments is consistent with expectations for fallout from a distal hydrothermal plume. We conclude that a postimpact hydrothermal system did develop at Chicxulub, which led to the expulsion of hydrothermal fluids into the Tertiary water column. Preliminary biostratigraphic and magnetostratigraphic dating on Yax-1 core suggest that this hydrothermal activity lasted for at least 300 ka.
    • Stratigraphic and sedimentological observations from seismic data across the Chicxulub impact basin

      Bell, C.; Morgan, J. V.; Hampson, G. J.; Trudgill, B. (The Meteoritical Society, 2004-01-01)
      Seismic data across the offshore half of the Chicxulub impact crater reveal a 145 kmdiameter post-impact basin to be a thickening of Tertiary sediment, which thickens by ~0.7 sec from the basin margin to the basin center. The basin existed long after the impact and was gradually infilled to its current flat surface. A suite of seismic horizons within the impact basin have been picked on four reflection lines across the crater. They reveal that the western and northwestern parts of the impact basin were filled first. Subsequently, there was a dramatic change in the depositional environment, indicated by an unconformable surface that can be mapped across the entire basin. A prograding shelf sequence downlaps onto this unconformity in the eastern basin. The seismic stratigraphic relationships suggest a marine regression, with sedimentation becoming gradually more passive as sediments fill the eastern part of the impact basin. The central and northeastern parts of the basin are filled last. The onshore hole Yaxcopoil-1 (Yax-1), which was drilled on the flanks of the southern basin, has been projected onto the offshore seismic data to the west of the crater center. Using dates obtained from this onshore well and regional data, approximate ages have been placed on the most significant horizons in the offshore seismic data. Our preliminary interpretation is that the western and northwestern basins were almost entirely filled by 40 Ma and that the marine regression observed in the eastern basin is early Miocene in age. Offshore seismic stratigraphic analyses and onshore data within Yax-1 suggest that the early Paleocene is highly attenuated across the impact basin. The Mesozoic section appears to be ~1 km thicker offshore than onshore. We calculate that, given this offshore thickening, the volume of Mesozoic rocks that have been excavated, melted, or vaporized during impact is around 15% larger than expected from calculations that assume the offshore thickness is equal to that onshore. This has significant consequences for any environmental calculations. The current offset between the K-T boundary outside and inside the crater is ~700 m. However, infilling of basins with sediments is usually accompanied by subsidence, and immediately following the impact, the difference would have been smaller. We calculate the original topographic offset on the K-T boundary to have been between 450 and 700 m, which is in agreement with depthdiameter scaling laws for a mixed target.