• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Representation of Large-Scale Ocean Circulation in the Atlantic and Southern Ocean in Climate Model Simulations and Projected Changes under Increased Warming

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_17857_sip1_m.pdf
    Size:
    82.73Mb
    Format:
    PDF
    Download
    Author
    Beadling, Rebecca
    Issue Date
    2020
    Keywords
    Climate Modelling
    Oceanography
    Advisor
    Russell, Joellen L.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Embargo
    Release after 11/05/2020
    Abstract
    The global ocean acts as a mediator of Earth’s climate due to its role in the storage of heat and carbon. Presently, the ocean accounts for the storage of approximately 93% of the anthropogenic heat on our planet and ~27% of the anthropogenic CO2. Two regions in particular, the Southern Ocean and North Atlantic Ocean (SO, NA), act as gateways for the exchange of CO2 and heat between the atmosphere and the interior ocean. This is due to the unique water mass transformation processes that occur in these regions. Despite their disproportionate role in the climate system, large uncertainty exists with respect to understanding how the ocean circulation patterns and properties are projected to change in these regions throughout the 21st century. One pathway toward reducing projection uncertainty in these regions is to use modern observations and observational products to comprehensively diagnose, quantify, and improve upon mean state biases that exist in the climate simulations used to produce future climate projections. The work presented in this dissertation is a comprehensive analysis of the large-scale ocean circulation and properties in historical and 21st century simulations of large-ensembles of fully-coupled climate and Earth System Models contributed to multiple generations of the Coupled Model Intercomparison Project (CMIP). In the subtropical NA, a key region through which properties from the tropics are advected to the subpolar latitudes, the volume transports of the major flow regimes are reasonably represented in many CMIP5 models relative that observed by the Rapid Climate Change (RAPID) instrumental array at 26.5ºN. As the climate warms, all components of the total flow through the subtropical NA, with the exception of the wind-driven surface Ekman transport, are projected to weaken. Particularly, by applying the dynamical theory of Sverdrup balance, this work highlights the fact that the wind-driven NA subtropical gyre itself is projected to spin-down in response to a reduced wind stress curl over the subtropical latitudes. This spin-down, in conjunction with the reduced overturning at high-latitudes, acts as a source of significant additional weakening to the northward western boundary current flow in the upper ocean. In the SO, despite its dominant role in the oceanic uptake of anthropogenic carbon and heat relative to other basins, the large-scale circulation and properties have been poorly represented in climate models, resulting in low confidence ascribed to 21st century projections of the state of the SO. A comprehensive analysis of the simulation of the large-scale circulation and properties is presented for the Southern Ocean (SO) across thirty-one CMIP5 models. The main focus lies in building a framework to understand the major contributors to a model’s ability to represent the Antarctic Circumpolar Current (ACC) transport. Across the CMIP5 ensemble, the models fall into five different categories: 1) models that produce a reasonable ACC transport for approximately the right reasons, 2) models that accurately simulate key metrics, yet produce a too weak ACC, 3) models that simulate the wind stress forcing at the ocean surface accurately, but have errors in the density gradient, 4) models that simulate an accurate density gradient, but exhibit errors in the wind stress forcing, and 5) models that produce errors in all the metrics. Building on the framework presented in the CMIP5 study, a comprehensive assessment of the large-scale circulation and properties as simulated in the SO is performed across ensembles of models contributed to the past three CMIP generations (CMIP3-CMIP6). The CMIP6 models show improved representation of key observable-metrics in the SO including surface wind stress and wind stress curl, strength of the ACC, and meridional density gradients in the region of the ACC. However, some persistent biases have carried over into CMIP6 including an upper ocean that remains too fresh and too warm, significant warm biases at depth in several simulations, and a poor representation of Antarctic sea ice extent (SIE). These biases in observable metrics need to be considered when interpreting projected trends or biogeochemical properties in this region.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Geosciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.