• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Development of New Organic Photoredox Catalysis Driven by Visible Light

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_17831_sip1_m.pdf
    Size:
    3.360Mb
    Format:
    PDF
    Download
    Thumbnail
    Name:
    azu_etd_17831_Crystal_structur ...
    Size:
    478.6Kb
    Format:
    Microsoft Word
    Description:
    Supplemental File
    DownloadPDF Variant
    Author
    Zhang, Yueteng
    Issue Date
    2020
    Keywords
    Dearomatization
    Deuteration
    Organocatalysis
    Photoredox
    Thioester
    Visible light
    Advisor
    Wang, Wei
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Embargo
    Release after 11/14/2020
    Abstract
    Development of efficient and sustainable synthetic technologies for molecular construction is the central goal in modern organic synthesis. In recent decades, organocatalysis has become one of the viable tools in organic synthesis with notable features including easy manipulation, low cost, and/or less susceptible to air and moisture. Organophotoredox catalysis has merged as a front runner in organocatalysis. My Ph.D. study focuses on the development of novel visible-light mediated organic photoredox catalysis strategies for the construction of structurally diverse molecular architectures in distinct ways. In the first efforts, a metal- and oxidant-free organophotocatalytic method for preparing structurally diverse thioesters from readily accessible, abundant aldehydes, has been realized. Excited by blue light, the simple and cost-effective 9,10-phenanthrenequinone (PQ) promotes hydrogen atom transfer (HAT) to selectively generate acyl radicals from corresponding aldehydes without inducing crossover reactivity of thioesters. In situ formed acyl radicals then react with thiosulfonate S-esters to efficiently produce thioesters. The mild and efficient method exhibits excellent substrate scope and outstanding functional group tolerance. Significantly, it is proved to be useful in a late-stage functionalization of complex molecules. Direct H/D exchange at formyl groups represents the most straightforward approach to C-1 deuterated aldehydes. Along this line, a new photoredox catalytic, visible-light mediated neutral radical approach has been developed via a unique double-HAT process. Selective control of highly reactive acyl radical enables driving the formation of deuterated products when an excess of D2O is employed. The power of H/D exchange process has been demonstrated for both aromatic aldehydes and aliphatic substrates, and more important late-stage deuterium incorporation into complex structures with uniformly high deuteration level (>90%). The direct dearomatization of indoles represents the most straightforward access to indolines. However, the exiting dearomative methods largely restrict to electron-rich indoles or go through an ionic process using strong nucleophiles. Toward this end, an unprecedented organophotocatalytic process by harnessing nucleophilic radicals to react with electron-deficient indoles was developed. The preparative power of this radical-engaged strategy has been demonstrated by direct addition of in situ formed nucleophilic radicals from readily accessible feedstock carboxylic acids, into structurally diverse electrophilic indoles including (thio)ester, amide, ketone, nitrile and thus delivering a series of trans-2,3-disubstituted indolines with uniformly high stereoselectivity (> 20:1 dr). Moreover, this approach has also been successfully applied to other aromatic heterocycles such as pyrroles, benzofurans and benzothiophenes.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Pharmacology & Toxicology
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.