• Login
    View Item 
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Warming and precipitation addition interact to affect plant spring phenology in alpine meadows on the central Qinghai-Tibetan Plateau

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    phenology_and_production--v1_e ...
    Size:
    1.245Mb
    Format:
    PDF
    Description:
    Final Accepted Manuscript
    Download
    Author
    Ganjurjav, Hasbagan
    Gornish, Elise S.
    Hu, Guozheng
    Schwartz, Mark W.
    Wan, Yunfan
    Li, Yue
    Gao, Qingzhu
    Affiliation
    Univ Arizona, Sch Nat Resources & Environm
    Issue Date
    2020-06-15
    Keywords
    Green up
    Flowering
    Functional group
    Spring precipitation
    Temperature
    Grassland
    
    Metadata
    Show full item record
    Publisher
    ELSEVIER
    Citation
    Ganjurjav, H., Gornish, E. S., Hu, G., Schwartz, M. W., Wan, Y., Li, Y., & Gao, Q. (2020). Warming and precipitation addition interact to affect plant spring phenology in alpine meadows on the central Qinghai-Tibetan Plateau. Agricultural and Forest Meteorology, 287, 107943. https://doi.org/10.1016/j.agrformet.2020.107943
    Journal
    AGRICULTURAL AND FOREST METEOROLOGY
    Rights
    © 2020 Elsevier B.V. All rights reserved.
    Collection Information
    This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
    Abstract
    Temperature and precipitation are primary regulators of plant phenology. However, our knowledge of how these factors might interact to affect plant phenology is incomplete. The Qinghai-Tibetan Plateau, a cold and high region, has experienced no consistent changes in spring phenology, despite a significant warming trend. We conducted a manipulative experiment of warming and precipitation addition in an alpine meadow on the Qinghai-Tibetan Plateau in 2015 (cold and wet), 2016 (warm and dry) and 2017 (mild and very wet). We found that warming increased annual variability of plant spring phenology. Warming delayed green up of all monitored species in 2016, advanced green up of early flowering species in 2015, and did not alter green up in 2017. For example, green up of the shallow rooted Kobresia pygmaea advanced 8 (+/- 2) days in 2015 and was delayed by 23 (+/- 3) days in a dry year (2016) under warming compared with control. Early spring precipitation addition can offset the delaying effects of warming in a dry year on the Qinghai-Tibetan Plateau. Under warming plus precipitation addition, community average green up advanced compared to control plots in 2015 and 2016, and community average flowering advanced for all three years. In 2016, flowering of K. pygmaea (an early flowering species) advanced under warming plus precipitation addition compared to control while flowering of other species did not change. Our results highlight that annual variation of soil moisture condition plays a critical role in determining the magnitude and direction of spring phenology response to warming. We provide insights in how plant spring phenology might change in a warmer future in the presence or absence of precipitation increase.
    Note
    24 month embargo; published online: 21 February 2020
    ISSN
    0168-1923
    DOI
    10.1016/j.agrformet.2020.107943
    Version
    Final accepted manuscript
    Sponsors
    National Natural Science Foundation of China
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.agrformet.2020.107943
    Scopus Count
    Collections
    UA Faculty Publications

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.