Show simple item record

dc.contributor.authorHenderson, Christopher
dc.contributor.authorSnelson, Stanley
dc.contributor.authorTarfulea, Andrei
dc.date.accessioned2020-06-05T19:20:19Z
dc.date.available2020-06-05T19:20:19Z
dc.date.issued2020-05
dc.identifier.citationHenderson, C., Snelson, S., & Tarfulea, A. (2020, May). Local solutions of the Landau equation with rough, slowly decaying initial data. In Annales de l'Institut Henri Poincaré C, Analyse non linéaire. Elsevier Masson.en_US
dc.identifier.issn0294-1449
dc.identifier.doi10.1016/j.anihpc.2020.04.004
dc.identifier.urihttp://hdl.handle.net/10150/641524
dc.description.abstractWe consider the Cauchy problem for the spatially inhomogeneous Landau equation with soft potentials in the case of large (i.e. non-perturbative) initial data. We construct a solution for any bounded, measurable initial data with uniform polynomial decay in the velocity variable, and that satisfies a technical lower bound assumption (but can have vacuum regions). For uniqueness in this weak class, we have to make the additional assumption that the initial data is Hölder continuous. Our hypotheses are much weaker, in terms of regularity and decay, than previous large-data well-posedness results in the literature. We also derive a continuation criterion for our solutions that is, for the case of very soft potentials, an improvement over the previous state of the art.en_US
dc.description.sponsorshipNational Science Foundation DMS-2003110en_US
dc.language.isoenen_US
dc.publisherElsevier Masson SASen_US
dc.rights© 2020 Elsevier Masson SAS. All rights reserved.en_US
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en_US
dc.subjectLandau equationen_US
dc.subjectLarge data well-posednessen_US
dc.subjectVacuum regionsen_US
dc.subjectClassical solutionsen_US
dc.subjectKinetic equationsen_US
dc.titleLocal solutions of the Landau equation with rough, slowly decaying initial dataen_US
dc.typeArticleen_US
dc.contributor.departmentUniv Arizona, Dept Mathen_US
dc.identifier.journalAnnales de l'Institut Henri Poincaré C, Analyse non linéaireen_US
dc.description.note24 month embargo; available online 12 May 2020en_US
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.en_US
dc.eprint.versionFinal accepted manuscripten_US
dc.identifier.piiS0294144920300469
dc.source.journaltitleAnnales de l'Institut Henri Poincaré C, Analyse non linéaire


Files in this item

Thumbnail
Name:
improved.pdf
Embargo:
2022-05-12
Size:
492.3Kb
Format:
PDF
Description:
Final Accepted Manuscript

This item appears in the following Collection(s)

Show simple item record