• Login
    View Item 
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Transparency and accountability in AI decision support: Explaining and visualizing convolutional neural networks for text information

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Transparency_and_accountabilit ...
    Size:
    705.9Kb
    Format:
    PDF
    Description:
    Final Accepted Manuscript
    Download
    Author
    Kim, Buomsoo
    Park, Jinsoo
    Suh, Jihae
    Affiliation
    Univ Arizona, Eller Coll Management
    Issue Date
    2020-07-01
    Keywords
    Convolutional neural network
    Machine learning interpretability
    Class activation mapping
    Explainable artificial intelligence
    
    Metadata
    Show full item record
    Publisher
    ELSEVIER
    Citation
    Kim, B., Park, J., & Suh, J. (2020). Transparency and accountability in AI decision support: Explaining and visualizing convolutional neural networks for text information. Decision Support Systems, 134, 113302. doi: 10.1016/j.dss.2020.113302
    Journal
    DECISION SUPPORT SYSTEMS
    Rights
    Copyright © 2020 Elsevier B.V. All rights reserved.
    Collection Information
    This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
    Abstract
    Proliferating applications of deep learning, along with the prevalence of large-scale text datasets, have revolutionized the natural language processing (NLP) field, thereby driving the recent explosive growth. Nevertheless, it is argued that state-of-the-art studies focus excessively on producing quantitative performances superior to existing models, by playing "the Kaggle game." Hence, the field requires more effort in solving new problems and proposing novel approaches and architectures. We claim that one of the promising and constructive efforts would be to design transparent and accountable artificial intelligence (AI) systems for text analytics. By doing so, we can enhance the applicability and problem-solving capacity of the system for real-world decision support. It is widely accepted that deep learning models demonstrate remarkable performances compared to existing algorithms. However, they are often criticized for being less interpretable, i.e., the "black box." In such cases, users tend to hesitate to utilize them for decision-making, especially in crucial tasks. Such complexity obstructs transparency and accountability of the overall system, potentially debilitating the deployment of decision support systems powered by AI. Furthermore, recent regulations are emphasizing fairness and transparency in algorithms to a greater extent, turning explanations more compulsory than voluntary. Thus, to enhance the transparency and accountability of the decision support system and preserve the capacity to model complex text data at the same time, we propose the Explaining and Visualizing Convolutional neural networks for Text information (EVCT) framework. By adopting and ameliorating cutting-edge methods in NLP and image processing, the EVCT framework provides a human-interpretable solution to the problem of text classification while minimizing information loss. Experimental results with large-scale, real-world datasets show that EVCT performs comparably to benchmark models, including widely used deep learning models. In addition, we provide instances of human-interpretable and relevant visualized explanations obtained from applying EVCT to the dataset and possible applications for real-world decision support.
    Note
    24 month embargo; published online: 01 July 2020
    ISSN
    0167-9236
    DOI
    10.1016/j.dss.2020.113302
    Version
    Final accepted manuscript
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.dss.2020.113302
    Scopus Count
    Collections
    UA Faculty Publications

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.