• Login
    View Item 
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Monte Carlo simulations of electron-sample interactions at phase boundaries and implications for automated mineralogy

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    MINE-D-19-01221R2-1.pdf
    Size:
    469.0Kb
    Format:
    PDF
    Description:
    Final Accepted Manuscript
    Download
    Author
    Barton, Isabel
    Affiliation
    Univ Arizona, Dept Min & Geol Engn
    Univ Arizona, Dept Min & Geol Engn
    Issue Date
    2020-08-15
    Keywords
    Boundary phases
    Automated mineralogy
    Geometallurgy
    Monte Carlo simulation
    QEMSCAN
    TIMA
    MLA
    
    Metadata
    Show full item record
    Publisher
    PERGAMON-ELSEVIER SCIENCE LTD
    Citation
    Barton, I. (2020). Monte Carlo simulations of electron-sample interactions at phase boundaries and implications for automated mineralogy. Minerals Engineering, 155, 106451. https://doi.org/10.1016/j.mineng.2020.106451
    Journal
    MINERALS ENGINEERING
    Rights
    © 2020 Elsevier Ltd. All rights reserved.
    Collection Information
    This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
    Abstract
    Automated mineralogy instrumentation (QEMSCAN, MLA, TIMA) is routinely used for materials characterization in the mining industry. All current techniques identify minerals based on a combination of backscattered electron and chemical (energy-dispersive spectroscopy) signals read from the sample. Boundary zones, where two or more minerals are touching, yield signals that reflect a mix of the characteristics of multiple minerals and that may or may not match anything in the mineral database. These phase boundaries, varying in width, are known to cause errors in automated mineralogy analyses, but what mineral and boundary characteristics affect phase boundary width and how much error phase boundaries can cause remain poorly understood. New Monte Carlo modeling of electron-sample interactions at and near phase boundaries shows that the width of the zone of mixed signals, and hence the amount of error, depends on the grain size and texture of the sample; the densities of the minerals and the ionization potentials of their constituent elements; and the position and orientation of the boundary between the minerals, as well as various instrumental factors such as beam accelerating voltage. Error induced by phase boundaries is high when a high accelerating voltage is used to examine fine-grained samples with complex (intergrowth, exsolution) textures that involve low-density minerals with low-ionization-potential elements. Error is low when the sample is coarse-grained, lacks complex textural relationships that create boundary area, and consists of high-density minerals with high-ionization-potential elements, which have a higher electron stopping power and prevent the beam from spreading out as much. Where low- and high-density minerals are in contact at an angled boundary, the width of the boundary zone is low when the high-density mineral is on top and high when the low-density phase is on top. Calculations based on these simulations indicate that the amount of area that could fall within phase boundary zones depends strongly on grain size, shape, and width of boundary zone. Boundary phases may contribute significantly to overall analytical error for fine-grained minerals with low densities and composed of elements with low ionization potentials, but for most samples the boundary phase area is likely to be < 5% of the total surface area and the error relatively small. Errors induced by boundary phases will probably continue to annoy geometallurgists for some time, but with proper laboratory procedures for validating and cross-checking automated mineralogy results, they should not be a major component of error for most samples.
    Note
    24 month embargo; published online: 26 May 2020
    ISSN
    0892-6875
    DOI
    10.1016/j.mineng.2020.106451
    Version
    Final accepted manuscript
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.mineng.2020.106451
    Scopus Count
    Collections
    UA Faculty Publications

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.