Show simple item record

dc.contributor.authorGillette, Andrew
dc.contributor.authorHu, Kaibo
dc.contributor.authorZhang, Shuo
dc.date.accessioned2020-07-31T23:06:01Z
dc.date.available2020-07-31T23:06:01Z
dc.date.issued2019-09-11
dc.identifier.citationGillette, A., Hu, K., & Zhang, S. (2019). Nonstandard finite element de Rham complexes on cubical meshes. BIT Numerical Mathematics, 1-37.en_US
dc.identifier.issn0006-3835
dc.identifier.doi10.1007/s10543-019-00779-y
dc.identifier.urihttp://hdl.handle.net/10150/641956
dc.description.abstractTwo general operations are proposed on finite element differential complexes on cubical meshes that can be used to construct and analyze sequences of "nonstandard" convergent methods. The first operation, called DoF-transfer, moves edge degrees of freedom to vertices in a way that reduces global degrees of freedom while increasing continuity order at vertices. The second operation, called serendipity, eliminates interior bubble functions and degrees of freedom locally on each element without affecting edge degrees of freedom. These operations can be used independently or in tandem to create nonstandard complexes that incorporate Hermite, Adini and "trimmed-Adini" elements. The resulting elements lead to convergent non-conforming methods for problems requiring stronger regularity and satisfy a discrete Korn inequality. Potential benefits of applying these elements to Stokes, biharmonic and elasticity problems are discussed.en_US
dc.description.sponsorshipAG was supported in part by National Science Foundation Award DMS-1522289. KH was supported inpart by the European Research Council under the European Union’s Seventh Framework Programme(FP7/2007-2013) / ERC grant agreement 339643. SZ was supported in part by the National NaturalScience Foundation of China with Grant No. 11471026.en_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media LLCen_US
dc.rightsCopyright © Springer Nature B.V. 2019.en_US
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en_US
dc.subjectFinite elementen_US
dc.subjectNonconforming elementen_US
dc.subjectde Rham complexen_US
dc.titleNonstandard finite element de Rham complexes on cubical meshesen_US
dc.typeArticleen_US
dc.identifier.eissn1572-9125
dc.contributor.departmentUniv Arizona, Dept Mathen_US
dc.identifier.journalBIT Numerical Mathematicsen_US
dc.description.note12 month embargo; published 11 September 2019en_US
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.en_US
dc.eprint.versionFinal accepted manuscripten_US
dc.identifier.pii779
dc.source.journaltitleBIT Numerical Mathematics
dc.source.volume60
dc.source.issue2
dc.source.beginpage373
dc.source.endpage409


Files in this item

Thumbnail
Name:
GHZ.pdf
Size:
365.2Kb
Format:
PDF
Description:
Final Accepted Manuscript

This item appears in the following Collection(s)

Show simple item record