• Login
    View Item 
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Optimization and Long-Term Stability of Micro Flow Sensors for Smart VP Shunts

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    FINAL_VERSION.pdf
    Size:
    1.459Mb
    Format:
    PDF
    Description:
    Final Accepted Manuscript
    Download
    Author
    Edes, Gergo
    Enikov, Eniko T.
    Skoch, Jesse
    Anton, Rein
    Affiliation
    Univ Arizona, Dept Aerosp & Mech Engn
    Univ Arizona, Dept Surg
    Issue Date
    2020-08-01
    Keywords
    Temperature sensors
    Magnetic sensors
    Sensitivity
    Transducers
    Magnetic tunneling
    VP shunt
    flow sensor
    thermal noise
    MEMS
    MTJ sensor
    
    Metadata
    Show full item record
    Publisher
    IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
    Citation
    G. Édes, E. T. Enikov, J. Skoch and R. Anton, "Optimization and Long-Term Stability of Micro Flow Sensors for Smart VP Shunts," in IEEE Sensors Journal, vol. 20, no. 15, pp. 8455-8462, 1 Aug.1, 2020, doi: 10.1109/JSEN.2020.2984781.
    Journal
    IEEE SENSORS JOURNAL
    Rights
    © 2020 IEEE.
    Collection Information
    This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
    Abstract
    This paper reports on a systematic study of the flow sensitivity and resolution of micro-flow sensors intended for use in implantable ventricular-peritoneal shunts. The flow sensors utilize ferromagnetic flaps (transducers) whose deflection is detected by ultra-sensitive MTJ sensors (20mV/V/Oe). A working range of 0-40 ml/h was demonstrated at a maximum uncertainty of 4% RMS and a resolution of 0.4 ml/h. Earlier studies on this sensor unveiled significant low-frequency noise (drift) limiting the sensitivity to 1.4 ml/hr. The present study identifies thermal noise as the main source of low-frequency drift. Using thermal compensation it was found that the drift can be reduced below 2 ml per 24-hr. Combining an array of four transducers operating in series, it has been demonstrated that a sensitivity can be increased 10.9 fold. Furthermore, the report examines the long-term structural stability of the sensors and produces a corrosion report suggesting a lifespan of 15 to 55 years.
    ISSN
    1530-437X
    EISSN
    2379-9153
    DOI
    10.1109/jsen.2020.2984781
    Version
    Final accepted manuscript
    ae974a485f413a2113503eed53cd6c53
    10.1109/jsen.2020.2984781
    Scopus Count
    Collections
    UA Faculty Publications

    entitlement

     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Adaptive optics with programmable Fourier-based wavefront sensors: a spatial light modulator approach to the LAM/ONERA on-sky pyramid sensor testbed

      Janin-Potiron, Pierre; Chambouleyron, Vincent; Schatz, Lauren; Fauvarque, Olivier; Bond, Charlotte Z.; Abautret, Yannick; Muslimov, Eduard; El-Hadi, Kacem; Sauvage, Jean-François; Dohlen, Kjetil; et al. (SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 2019-07-08)
      Wavefront sensors (WFSs) encode phase information of an incoming wavefront into an intensity pattern that can be measured on a camera. Several kinds of WFSs are used in astronomical adaptive optics. Among them, Fourier-based WFSs perform a filtering operation on the wavefront in the focal plane. The most well-known example of a WFS of this kind is the Zernike WFS. The pyramid WFS also belongs to this class. Based on this same principle, WFSs can be proposed, such as the n-faced pyramid (which ultimately becomes an axicon) or the flattened pyramid, depending on whether the image formation is incoherent or coherent. To test such concepts, the LAM/ONERA on-sky pyramid sensor (LOOPS) adaptive optics testbed hosted at the Laboratoire d’Astrophysique de Marseille has been upgraded by adding a spatial light modulator (SLM). This device, placed in a focal plane produces high-definition phase masks that mimic otherwise bulk optic devices. We first present the optical design and upgrades made to the experimental setup of the LOOPS bench. Then, we focus on the generation of the phase masks with the SLM and the implications of having such a device in a focal plane. Finally, we present the first closed-loop results in either static or dynamic mode with different WFS applied on the SLM.
    • Thumbnail

      The Soil Moisture Active Passive Marena, Oklahoma, In Situ Sensor Testbed (SMAP-MOISST): Testbed Design and Evaluation of In Situ Sensors

      Zreda, Marek; Cosh, Michael H.; Ochsner, Tyson E.; McKee, Lynn; Dong, Jingnuo; Basara, Jeffrey B.; Evett, Steven R.; Hatch, Christine E.; Small, Eric E.; Steele-Dunne, Susan C.; et al. (Soil Sci Soc Amer, 2016-04)
      In situ soil moisture monitoring networks are critical to the development of soil moisture remote sensing missions as well as agricultural and environmental management, weather forecasting, and many other endeavors. These in situ networks utilize a variety of sensors and installation practices, which confounds the development of a unified reference database for satellite calibration and validation programs. As part of the Soil Moisture Active Passive Mission, the Marena, Oklahoma, In Situ Sensor Testbed (SMAP-MOISST) was initiated to perform inter-comparisons and study sensor limitations. Soil moisture sensors that are deployed in major monitoring networks were included in the study, along with new and emerging technologies, such as the Cosmic Ray Soil Moisture Observing System (COSMOS), passive/active distributed temperature sensing (DTS), and global positioning system reflectometers (GPSR). Four profile stations were installed in May of 2010, and soil moisture was monitored to a depth of 1 m on an hourly basis. The four stations were distributed within a circular domain of approximately 600 m diameter, adequate to encompass the sensing range of COSMOS. The sensors included in the base station configuration included the Stevens Water Hydra Probe, Campbell Scientific 616 and 229, Decagon EC-TM, Delta-T Theta Probe, Acclima, and Sentek EnviroSMART capacitance system. In addition, the Pico TRIME system and additional time-domain reflectometry (TDR) systems were deployed when available. It was necessary to apply site-specific calibration to most sensors to reach an RMSE below 0.04 m(3) m(-3). For most sensor types, a single near surface sensor could be scaled to represent the areal-average of a field domain by simple linear regression, resulting in RMSE values around 0.03 m(3) m(-3).
    • Thumbnail

      COMBINING SENSORS WITH AIRBORNE TELEMETRY INSTRUMENTATION TO MAKE RANGE MEASUREMENTS AND OBTAIN AERODYNAMICS

      Davis, Bradford S.; Brown, T. Gordon; U.S. Army Research Laboratory (International Foundation for Telemetering, 1999-10)
      Obtaining a projectile’s free-flight motion profile and its aerodynamic coefficients is typically accomplished at indoor test ranges using photographic techniques synchronized to timing stations. Since these ranges are relatively short, many discrete tests are necessary to compile a complete understanding of the projectile’s behavior. When Time Space Position Information (TSPI) is requested over long-range flights, it has been gathered with expensive video, laser, and radar trackers. These can be inaccurate at times and are limited to locations where the range equipment is able to track the projectile’s entire flight. With the ever-increasing sophistication of ordnance, such as smart and competent munitions that have multi-stage thrusting and maneuvering capability, it is becoming increasingly difficult to make the necessary measurements using current measurement techniques. Microelectromechanical Systems (MEMS) sensors and other electro-optical and magnetic sensors referenced to the sun and earth allow the projectile’s angular rates (spin, pitch, and yaw) and accelerations (axial and radial) to be measured throughout the flight. These sensors have been packaged into miniaturized telemetry instrumentation systems and placed within empty voids of the munition or in place of the fuze or warhead section. By combining this sensor data with a 6-DOF trajectory code, many of the projectiles aerodynamic coefficients including drag, static moment, and damping moment over a large Mach Number range and over multiple flight paths have been obtained. These techniques decrease the number of test shots required, reduce the complexity of the test setup, and reduce the test costs. Test data from instrumented tank, artillery, and rocket flight tests are presented in this report to show the current capability of making inflight measurements using telemetry-based techniques.
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.