A Methodology to Assess and Mitigate Daylight Discomfort Glare and Provide Views in Daylit Learning Environments
Author
Alaqtum, TasbeehIssue Date
2020Keywords
Climate-based Annual Glare AnalysisDaylight Discomfort Glare
Daylight Glare Probability
Eye Adaptability
Learning Environment
Visual Comfort
Advisor
Chalfoun, Nader
Metadata
Show full item recordPublisher
The University of Arizona.Rights
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author.Abstract
Daylight Discomfort Glare (DDG) is a common problem in many learning environments. It has been the topic of a significant body of research, and many attempts have been made to develop a reliable method to assess and mitigate it. In learning environments, students often prefer to select seats with views to connect with the outdoor environment while performing tasks. However, providing views is contingent upon having glare-free windows. This issue is challenging due to the very dynamic changes of outdoor illuminations and the complicated nature of the glare phenomenon. In this thesis, the latest reliable factors affecting DDG are investigated and a “Glare-Free Design” methodology is proposed to ensure providing quality views. The study also includes multi-fold contributions. First, the Daylight Glare Probability (DGP) metric is analyzed by conducting an extensive study on understanding the factors contributing to DDG and their impacts on DGP. A summary with sketches and graphs is also provided for architects to allow them to easily understand DDG occurrence. Second, a methodology is established to assess and mitigate DDG in learning environments with a real-world example of the public study areas at University of Arizona Main Library. Third, “Glare-Reduction” design strategies are implemented to mitigate DDG to imperceptible levels and achieve visual comfort for more than 80% of space users. Additional strategies are applied to augment the illuminance intensities on the interior surfaces and further balance out the overall daylighting distribution. The thesis findings are supplemented by collecting data, carrying out field measurements, and creating a computer simulation model. The model is created using the software programs Rhino and DIVA. A correlation between the simulation results and the experiment is made and reveals low validation error for the methodology. Eventually, an advanced annual glare analysis is produced, and results are obtained to be used as the basis to propose multiple climate-based strategies at the iteration process. The iteration process is a feedback-loop-based process meaning that after implementing each strategy a check process on glare takes place. This overall methodology can be used for any other learning environment while considering climate and orientation.Type
textElectronic Thesis
Degree Name
M.S.Degree Level
mastersDegree Program
Graduate CollegeArchitecture