Milky Way Satellite Census. I. The Observational Selection Function for Milky Way Satellites in DES Y3 and Pan-STARRS DR1
Name:
Drlica-Wagner_2020_ApJ_893_47.pdf
Size:
2.070Mb
Format:
PDF
Description:
Final Published Version
Author
Drlica-Wagner, A.Bechtol, K.
Mau, S.
McNanna, M.
Nadler, E. O.
Pace, A. B.
Li, T. S.
Pieres, A.
Rozo, E.
Simon, J. D.
Walker, A. R.
Wechsler, R. H.
Abbott, T. M. C.
Allam, S.
Annis, J.
Bertin, E.
Brooks, D.
Burke, D. L.
Rosell, A. Carnero
Carrasco Kind, M.
Carretero, J.
Costanzi, M.
da Costa, L. N.
De Vicente, J.
Desai, S.
Diehl, H. T.
Doel, P.
Eifler, T. F.
Everett, S.
Flaugher, B.
Frieman, J.
García-Bellido, J.
Gaztanaga, E.
Gruen, D.
Gruendl, R. A.
Gschwend, J.
Gutierrez, G.
Honscheid, K.
James, D. J.
Krause, E.
Kuehn, K.
Kuropatkin, N.
Lahav, O.
Maia, M. A. G.
Marshall, J. L.
Melchior, P.
Menanteau, F.
Miquel, R.
Palmese, A.
Plazas, A. A.
Sanchez, E.
Scarpine, V.
Schubnell, M.
Serrano, S.
Sevilla-Noarbe, I.
Smith, M.
Suchyta, E.
Tarle, G.
Affiliation
Univ Arizona, Dept PhysIssue Date
2020-04-15
Metadata
Show full item recordPublisher
IOP PUBLISHING LTDCitation
A. Drlica-Wagner et al 2020 ApJ 893 47Journal
ASTROPHYSICAL JOURNALRights
Copyright © 2020. The American Astronomical Society. All rights reserved.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
We report the results of a systematic search for ultra-faint Milky Way satellite galaxies using data from the Dark Energy Survey (DES) and Pan-STARRS1 (PS1). Together, DES and PS1 provide multi-band photometry in optical/near-infrared wavelengths over similar to 80% of the sky. Our search for satellite galaxies targets similar to 25,000 deg(2) of the high-Galactic-latitude sky reaching a 10 sigma point-source depth of greater than or similar to 22.5 mag in the g and r bands. While satellite galaxy searches have been performed independently on DES and PS1 before, this is the first time that a self-consistent search is performed across both data sets. We do not detect any new high-significance satellite galaxy candidates, recovering the majority of satellites previously detected in surveys of comparable depth. We characterize the sensitivity of our search using a large set of simulated satellites injected into the survey data. We use these simulations to derive both analytic and machine-learning models that accurately predict the detectability of Milky Way satellites as a function of their distance, size, luminosity, and location on the sky. To demonstrate the utility of this observational selection function, we calculate the luminosity function of Milky Way satellite galaxies, assuming that the known population of satellite galaxies is representative of the underlying distribution. We provide access to our observational selection function to facilitate comparisons with cosmological models of galaxy formation and evolution.ISSN
0004-637XVersion
Final published versionae974a485f413a2113503eed53cd6c53
10.3847/1538-4357/ab7eb9