Name:
Blackman_2020_AJ_159_238.pdf
Size:
6.819Mb
Format:
PDF
Description:
Final Published Version
Author
Blackman, Ryan T.Fischer, Debra A.

Jurgenson, Colby A.
Sawyer, David
McCracken, Tyler M.
Szymkowiak, Andrew E.
Petersburg, Ryan R.
Joel Ong, J. M.
Brewer, John M.

Zhao, Lily L.
Leet, Christopher
Buchhave, Lars A.
Tronsgaard, René
Llama, Joe
Sawyer, Travis
Davis, Allen B.
Cabot, Samuel H. C.
Shao, Michael
Trahan, Russell
Nemati, Bijan
Genoni, Matteo
Pariani, Giorgio
Riva, Marco
Fournier, Paul
Pawluczyk, Rafal
Affiliation
Univ Arizona, Coll Opt SciIssue Date
2020-04-29
Metadata
Show full item recordPublisher
IOP PUBLISHING LTDCitation
Ryan T. Blackman et al 2020 AJ 159 238Journal
ASTRONOMICAL JOURNALRights
Copyright © 2020. The American Astronomical Society. All rights reserved.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
The EXtreme PREcision Spectrograph (EXPRES) is a new Doppler spectrograph designed to reach a radial-velocity measurement precision sufficient to detect Earth-like exoplanets orbiting nearby, bright stars. We report on extensive laboratory testing and on-sky observations to quantitatively assess the instrumental radial-velocity measurement precision of EXPRES, with a focused discussion of individual terms in the instrument error budget. We find that EXPRES can reach a single-measurement instrument calibration precision better than 10 cm s(-1), not including photon noise from stellar observations. We also report on the performance of the various environmental, mechanical, and optical subsystems of EXPRES, assessing any contributions to radial-velocity error. For atmospheric and telescope related effects, this includes the fast tip-tilt guiding system, atmospheric dispersion compensation, and the chromatic exposure meter. For instrument calibration, this includes the laser fRequency comb (LFC), flat-field light source, CCD detector, and effects in the optical fibers. Modal noise is mitigated to a negligible level via a chaotic fiber agitator, which is especially important for wavelength calibration with the LFC. Regarding detector effects, we empirically assess the impact on the radial-velocity precision due to pixel-position nonuniformities and charge transfer inefficiency (CTI). EXPRES has begun its science survey to discover exoplanets orbiting G-dwarf and K-dwarf stars, in addition to transit spectroscopy and measurements of the Rossiter-McLaughlin effect.ISSN
0004-6256Version
Final published versionae974a485f413a2113503eed53cd6c53
10.3847/1538-3881/ab811d