• Login
    View Item 
    •   Home
    • Journals and Magazines
    • Society for Range Management Journal Archives
    • Rangeland Ecology & Management / Journal of Range Management
    • Rangeland Ecology & Management, Volume 63 (2010)
    • Rangeland Ecology & Management, Volume 63, Number 5 (September 2010)
    • View Item
    •   Home
    • Journals and Magazines
    • Society for Range Management Journal Archives
    • Rangeland Ecology & Management / Journal of Range Management
    • Rangeland Ecology & Management, Volume 63 (2010)
    • Rangeland Ecology & Management, Volume 63, Number 5 (September 2010)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Redistribution of Runoff Among Vegetation Patch Types: On Ecohydrological Optimality of Herbaceous Capture of Run-On

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    20072-34952-1-PB.pdf
    Size:
    1.156Mb
    Format:
    PDF
    Download
    Author
    Urgeghe, Anna M.
    Breshears, David D.
    Martens, Scott N.
    Beeson, Peter C.
    Issue Date
    2010-09-01
    Keywords
    ecohydrology
    runoff redistribution
    run-on
    threshold response
    vegetation patch types
    woodlands
    
    Metadata
    Show full item record
    Citation
    Urgeghe, A. M., Breshears, D. D., Martens, S. N., & Beeson, P. C. (2010). Redistribution of runoff among vegetation patch types: on ecohydrological optimality of herbaceous capture of run-on. Rangeland Ecology & Management, 63(5), 497-504.
    Publisher
    Society for Range Management
    Journal
    Rangeland Ecology & Management
    URI
    http://hdl.handle.net/10150/642812
    DOI
    10.2111/REM-D-09-00185.1
    Additional Links
    https://rangelands.org/
    Abstract
    A central tenant of ecohydrology in drylands is that runoff redistribution from bare to vegetated patches concentrates the key limiting resource of water, which can then enhance vegetation growth and biomass. Conversely, a reduction in vegetation patches, particularly those associated with herbaceous plants, can lead to a threshold-like response in which bare patches become highly interconnected, triggering a large increase in hillslope runoff and associated erosion. However, generally lacking is an assessment of how maximization of run-on to herbaceous patches relates to minimization of hillslope-scale runoff. To illustrate how runoff redistribution potentially changes in response to conversion of herbaceous patches to bare ones, we used a spatially distributed model, SPLASH (Simulator for Processes at the Landscape Surface-Subsurface Hydrology), with an example of a semiarid pin ̃on-juniper woodland hillslope with seven combinations of bare and herbaceous patch cover, culminating in complete loss of herbaceous patches, for a 1-yr design storm. As expected, the amount of hillslope runoff increased curvilinearly with reductions in herbaceous cover as runoff per cell increased from bare patches and run-on per cell increased for herbaceous patches. Notably, the total amount of run-on to all herbaceous patches was greatest when the amount of bare cover was intermediate, highlighting a trade-off between the source area for generating runoff and the sink area for capturing run-on. The specific nature of patch-hillslope runoff redistribution responses certainly depends on several site-specific conditions, but the general nature of the response exhibited in our example simulation may be indicative of a general type of response applicable to many rangelands. We suggest that a more robust suite of such relationships could be valuable for managing rangelands by enabling explicit accounting for optimality and trade-offs in biomass per herbaceous patch, total herbaceous cover, and prevention of hillslope-scale connectivity of bare patches that triggers a large increase in runoff and associated erosion. 
    Type
    text
    Article
    Language
    en
    ISSN
    0022-409X
    ae974a485f413a2113503eed53cd6c53
    10.2111/REM-D-09-00185.1
    Scopus Count
    Collections
    Rangeland Ecology & Management, Volume 63, Number 5 (September 2010)

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.