Show simple item record

dc.contributor.authorGilmanov, Tagir G.
dc.contributor.authorSvejcar, Tony J.
dc.contributor.authorJohnson, Douglas A.
dc.contributor.authorAngell, Raymond F.
dc.contributor.authorSaliendra, Nicanor Z.
dc.contributor.authorWylie, Bruce K.
dc.date.accessioned2020-09-05T07:38:43Z
dc.date.available2020-09-05T07:38:43Z
dc.date.issued2006-11-01
dc.identifier.citationGilmanov, T. G., Svejcar, T. J., Johnson, D. A., Angell, R. F., Saliendra, N. Z., & Wylie, B. K. (2006). Long-term dynamics of production, respiration, and net CO2 exchange in two sagebrush-steppe ecosystems. Rangeland Ecology & Management, 59(6), 585-599.
dc.identifier.issn0022-409X
dc.identifier.doi10.2111/05-198R1.1
dc.identifier.urihttp://hdl.handle.net/10150/643112
dc.description.abstractWe present a synthesis of long-term measurements of CO2 exchange in 2 US Intermountain West sagebrush-steppe ecosystems. The locations near Burns, Oregon (1995-2001), and Dubois, Idaho (1996-2001), are part of the AgriFlux Network of the Agricultural Research Service, United States Department of Agriculture. Measurements of net ecosystem CO2 exchange (Fc) during the growing season were continuously recorded at flux towers using the Bowen ratio-energy balance technique. Data were partitioned into gross primary productivity (Pg) and ecosystem respiration (Re) using the light-response function method. Wintertime fluxes were measured during 1999/2000 and 2000/2001 and used to model fluxes in other winters. Comparison of daytime respiration derived from light-response analysis with nighttime tower measurements showed close correlation, with daytime respiration being on the average higher than nighttime respiration. Maxima of Pg and Re at Burns were both 20 g CO2 m2 d-1 in 1998. Maxima of Pg and Re at Dubois were 37 and 35 g CO2 m-2 d-1, respectively, in 1997. Mean annual gross primary production at Burns was 1 111 (range 475-1 715) g CO2 m-2 y-1 or about 30% lower than that at Dubois (1 602, range 963-2 162 g CO2 m-2 y-1). Across the years, both ecosystems were net sinks for atmospheric CO2 with a mean net ecosystem CO2 exchange of 82 g CO2 m-2 y-1 at Burns and 253 g CO-2 m-2 y-1 at Dubois, but on a yearly basis either site could be a C sink or source, mostly depending on precipitation timing and amount. Total annual precipitation is not a good predictor of carbon sequestration across sites. Our results suggest that Fc should be partitioned into Pg and Re components to allow prediction of seasonal and yearly dynamics of CO2 fluxes. 
dc.language.isoen
dc.publisherSociety for Range Management
dc.relation.urlhttps://rangelands.org/
dc.rightsCopyright © Society for Range Management.
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectCO2 flux tower measurements
dc.subjectgross primary production
dc.subjectecosystem respiration
dc.subjectflux partitioning
dc.subjectdaytime respiration
dc.subjectnighttime respiration
dc.subjectlight-response function method
dc.subjectUS Intermountain West
dc.titleLong-Term Dynamics of Production, Respiration, and Net CO2 Exchange in Two Sagebrush-Steppe Ecosystems
dc.typetext
dc.typeArticle
dc.identifier.journalRangeland Ecology & Management
dc.description.collectioninformationThe Rangeland Ecology & Management archives are made available by the Society for Range Management and the University of Arizona Libraries. Contact lbry-journals@email.arizona.edu for further information.
dc.eprint.versionFinal published version
dc.description.admin-noteMigrated from OJS platform August 2020
dc.description.admin-noteLegacy DOIs that must be preserved: 10.2458/azu_jrm_v59i6_gilmanov
dc.source.volume59
dc.source.issue6
dc.source.beginpage585-599
refterms.dateFOA2020-09-05T07:38:43Z


Files in this item

Thumbnail
Name:
19242-32417-1-PB.pdf
Size:
1.946Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record