Hydrologic responses of a montane riparian ecosystem following cattle use
Issue Date
2001-09-01Keywords
mountain soilsbioallethrin
drainage
water flow resistance
terrain
channels
soil organic matter
soil density
riparian grasslands
overland flow
runoff
rainfall simulators
grazing intensity
plant density
biomass
plant litter
bulk density
Colorado
soil water
runoff
stem density
microchannels
sinuosity
drainage density
rainfall simulation
Metadata
Show full item recordCitation
Flenniken, M., McEldowney, R. R., Leininger, W. C., Frasier, G. W., & Trlica, M. J. (2001). Hydrologic responses of a montane riparian ecosystem following cattle use. Journal of Range Management, 54(5), 567-574.Publisher
Society for Range ManagementJournal
Journal of Range ManagementAdditional Links
https://rangelands.org/Abstract
Riparian areas link streams with their terrestrial catchments and decrease water pollution by trapping sediments from upland sources before they reach streams or lakes. Livestock grazing in riparian areas is a controversial practice. If not properly managed, cattle can cause degradation to both the riparian zone and adjacent water body. Vegetative, soil microtopographical, microchannel and hydrograph parameters were measured in a montane riparian community in northern Colorado to quantify the effects of cattle on overland flow and runoff characteristics. Treatments were cattle grazing plus trampling, cattle trampling, mowing, and a control. Water was applied to plots (3 m x 10 m) at a rate of 100 mm hr(-1) using a rainfall simulator. Concurrently, overland flow was introduced at the upper end of the plots at an equivalent rate of 25 mm hr(-1). A high intensity-short duration grazing treatment was used for the cattle-treated plots. Reduction in vegetation stem density and aboveground biomass by cattle decreased microchannel sinuosity and drainage density. Cattle-treated plots had greater flow velocities and depths in microchannels compared with mowed and control plots. Reduced stem density and aboveground biomass by grazing left fewer obstacles to divert flows, which decreased microchannel sinuosity and drainage density. Flows were concentrated into fewer microchannels with deeper flows. Microchannel characteristics were not significant factors affecting total runoff. Stem density and rainfall intensity were the most important factors in predicting runoff characteristics and total runoff. Results from this study have improved our understanding of flow and runoff processes following cattle use of a riparian ecosystem.Type
textArticle
Language
enISSN
0022-409Xae974a485f413a2113503eed53cd6c53
10.2307/4003586
Scopus Count
Related items
Showing items related by title, author, creator and subject.
-
Sediment movement and filtration in a riparian meadow following cattle useMceldowney, R. R.; Flenniken, M.; Frasier, G. W.; Trlica, M. J.; Leininger, W. C. (Society for Range Management, 2002-07-01)Improper livestock grazing practices in western U.S. riparian areas may reduce the nutrient and pollutant removal function of riparian communities, resulting in degradation of surface water quality. Short duration-high intensity cattle use in 3 x 10 m plots was evaluated in a montane riparian meadow in northern Colorado to quantify livestock effects on sediment movement and filtration under simulated rainfall (approximately equal to 100 mm hour(-1)) plus overland flow (approximately equal to 25 mm hour(-1)) conditions. Four treatments: 1) control, 2) mowed to 10 cm stubble height, 3) trampled by cattle, and 4) cattle grazed plus trampled (grazed) were evaluated. Sixty kg of sediment was introduced to overland flow in each plot. Sediment movement was evaluated using sediment traps positioned in microchannels and on vegetation islands at 5 distances downslope from the upper end of the plots and by sediment front advancement. Most sediment deposition occurred within the first meter downslope from application. About 90% of the applied sediment was filtered from runoff within 10 m in the control and mowed treatments, while approximately 84 and 77% of the applied sediment was trapped in the trampled and grazed treatment plots, respectively. The primary variables that influenced sediment filtration were stem density and surface random roughness. Stem density was the most influential variable that affected sediment filtration. Cattle grazing reduced the stem density by 40%. Monitoring of stem density should aid land managers in regulating cattle use of riparian communities and facilitate the protection of surface water quality from sediment in overland flow.
-
Seasonal grazing affects soil physical properties of a montane riparian communityWheeler, M. A.; Trlica, M. J.; Frasier, G. W.; Reeder, J. D. (Society for Range Management, 2002-01-01)The effects of seasonal grazing treatments (early spring and late summer) on soil physical properties were studied in a montane riparian ecosystem in northern Colorado. Infiltration rates and bulk density were used as primary indicators of responses to a 1-time heavy grazing event on previously protected paddocks. Soil bulk density, porosity, gravimetric water content, organic carbon concentration and texture were measured at 0-5 cm, 5-10 cm, and 10-15 cm depths to determine how these parameters affected infiltration rates. Assessment of initial changes and subsequent recovery of the soil properties in response to the grazing treatments was conducted by measuring these parameters before each grazing event and at 4 time periods following the grazing event. Few differences between spring or late summer grazing periods on soil physical properties were found. A stepwise multiple regression model for infiltration rate based on soil physical properties yielded a low R2 (0.31), which indicated much unexplained variability in infiltration. However, infiltration rates declined significantly and bulk density increased at the 5-10 cm depth and 10-15 cm depth in grazed plots immediately following grazing, but the highly organic surface layer (0-5 cm) had no significant compaction. Infiltration rates and soil bulk densities returned to pre-disturbed values within 1 year after grazing events, suggesting full hydrologic recovery. This recovery may be related to frequent freeze-thaw events and high organic matter in soils.
-
Tracked vehicle effects on vegetation and soil characteristicsProsser, C. W.; Sedivec, K. K.; Barker, W. T. (Society for Range Management, 2000-11-01)A 3-year experiment to evaluate tracked vehicle effects on vegetation and soil characteristics was established on the Gilbert C.Grafton South State Military Reservation (CGS) in North Dakota. Study objectives were to evaluate the effects of 3 tracked vehicle use intensity treatments on plant species cover and frequency, and soil compaction. The 3 treatments evaluated include heavy use (74 passes), moderate use (37 passes) and no use. The moderate use treatment represents a typical use of 1 battalion unit at CGS with the heavy use treatment classified as 2 battalion units. This land area comprised a 50 by 150 meter block subdivided into three, 50 by 50 meter blocks. Each 50 by 50 meter block was subdivided into three, 16.7 by 50 meter blocks with each block treated with 1 of the 3 treatments. Soil bulk density increased (P < 0.05) on the moderate and heavy use treatments in the 0 to 15, 30 to 45, and 45 to 60 cm soil depths. Kentucky blue-grass (Poa pratensis L.) cover (P < 0.05) decreased in 1996 on both the moderate and heavy use treatments but was not (P >0.05) different among all treatments in 1997. The tracked vehicle use on the heavy and moderate treatments did not change species composition or litter amounts after 2 years; however, bulk density and bare ground increased on both treatments in 1996 and 1997.