Author
Willms, W. D.Kenzie, O. R.
McAllister, T. A.
Colwell, D.
Veira, D.
Wilmshurst, J. F.
Entz, T.
Olson, M. E.
Issue Date
2002-09-01Keywords
microbial contaminationprotozoal infections
nematode infections
Giardia
Cryptosporidium
Trichostrongylus
Nematodirus
algae and seaweeds
ponds
salinity
British Columbia
liveweight gain
calves
palatability
Alberta
cattle manure
water supply
water troughs
stocking rate
beef cows
feedlots
steers
prairies
water quality
grazing
beef cattle
ponds
dugouts
weight gain
water intake
Metadata
Show full item recordCitation
Willms, W. D., Kenzie, O. R., McAllister, T. A., Colwell, D., Veira, D., Wilmshurst, J. F., ... & Olson, M. E. (2002). Effects of water quality on cattle performance. Journal of Range Management, 55(5), 452-460.Publisher
Society for Range ManagementJournal
Journal of Range ManagementAdditional Links
https://rangelands.org/Abstract
Water is an important nutrient for livestock production and is often provided on rangelands directly from ponds or dugouts. Cattle may defecate and urinate into the water thereby adding nutrients and reducing palatability. A study was conducted to examine the effects of water source on cattle production and behavior, to determine the relationship of selected chemical and biological constituents on the observed response and to test the effect of fecal contamination on water consumption. Four dugouts or ponds were selected at 4 sites: 2 in the Fescue Prairie near Stavely in southwestern Alberta, 1 in the Mixed Prairie at Onefour in southeastern Alberta, and 1 in the Palouse Prairie near Kamloops, British Columbia. Yearling Herefords were tested at 3 sites and Hereford cow-calf pairs at 1 Stavely site. At each site, three paddocks radiated from the pond that were stocked with 10 yearlings or cow-calf pairs randomly assigned to either clean water (water delivered to a trough from a well, river, or pond), pond water pumped to a trough (pond(trough)), or direct access into the pond (pond(direct)). The trials were repeated at each site for 3 to 6 years. Observations were made on cattle weight gains, cow backfat thickness, and activity budgets. Fecal samples were analyzed for selected parasites and pathogens. Other experiments were conducted to determine the effects of manure-contaminated water on feed and water consumption and water selection. Calves, with cows drinking clean water, gained 9% more (P < 0.10) weight than those with cows on pond(direct) but cow weight and backfat thickness were not affected. Yearling heifers having access to clean water gained 23% (P = 0.045) and 20% (P = 0.076) more weight than those on pond(direct) and pond(trough), respectively. Cattle avoided water that was contaminated with 0.005% fresh manure by weight when given a choice of clean water. Cattle that had access to clean water spent more time grazing and less time resting than those that were offered pond(trough) or pond(direct). Cattle management must consider water quality together with forage conditions in order to achieve optimal production from rangeland.Type
textArticle
Language
enISSN
0022-409Xae974a485f413a2113503eed53cd6c53
10.2307/4003222
Scopus Count
Related items
Showing items related by title, author, creator and subject.
-
Economic Alternatives in Solving the U. S.-Mexico Colorado River Water Salinity Problem (invited)Martin, William E.; Arizona Agricultural Experiment Station, the University of Arizona, Tucson (Arizona-Nevada Academy of Science, 1974-04-20)A proposed desalting plant is an engineering solution to the effects of a problem which could have been avoided and even now could be reduced on the farm. Water costing $125 per acre-foot will be delivered to Mexico to grow wheat, cotton, garden crops, alfalfa and safflower, of which the average value added per acre-foot was estimated at $80 for cotton and garden crops and $14 for wheat, alfalfa and safflower. The U.S. government, instead of building the desalting complex, could accomplish its purpose just as well by paying each farmer in the Yuma area, in return for the farmers reducing their drainage flow by whatever method they see fit, $114 per acre per year for the next 50 years. With proper management on the farm, the costs of managing salinity need not be high.
-
Water Resource Alternatives for Power Generation in ArizonaSmith, Stephen E.; DeCook, K. James; Fazzolare, Rocco A.; Nuclear Engineering, University of Arizona, Tucson; Water Resources Research Center, University of Arizona, Tucson (Arizona-Nevada Academy of Science, 1974-04-20)An examination of potential water sources for power plant cooling in Arizona is presented along with information pertinent to Arizona's future water needs relative to electrical usage growth. It has been projected that Arizona's peak electrical power demands in 1980 and 1990 will exceed that of 1970 by some 5000 megawatts and 16000 megawatts of electricity respectively. At present, the bulk of the electrical energy generated in the western states originates at hydroelectric installations. Utilization of nuclear reactors for power generation requires a larger amount of cooling water than is required for a comparable fossil-fueled plant. It is suggested that the utilization of reclaimed wastewater for cooling purposes is a viable and attractive alternative to groundwater pumpage from both economic and ecological standpoints. Savings arise from conservation of fuel normally required for well pumps, costs of well construction are not required, quantities of fresh water should be released for consumption by alternate users, and a previously unused resource would be effectively recycled.
-
A Rational Water Policy for Desert CitiesMatlock, W. G.; Agricultural Engineering, Soils, Water and Engineering Department, University of Arizona (Arizona-Nevada Academy of Science, 1974-04-20)Four sources of water supply for desert cities are rainfall, runoff, groundwater, and imported water, and the potential use for each varies. The government can institute various policy changes to eliminate or reduce the imbalance between water supply and demand. Restrictions should be placed on water-use luxuries such as swimming pools, subdivision lakes, fountains, etc. Water pricing should be progressive; each unit of increased use above a reasonable minimum should be charged for at an increasing rate. Runoff from individual properties, homes, storage, and supermarkets should be minimized through the use of onsite recharge wells, and various collection methods should be initiated. A campaign to acquaint the general public with a new water policy must be inaugurated.