• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The Role of Colonic Short Chain Fatty Acids in Glucose Homeostasis

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_18274_sip1_m.pdf
    Embargo:
    2021-09-15
    Size:
    1.704Mb
    Format:
    PDF
    Download
    Author
    Lane, Adelina Isabella Lilani
    Issue Date
    2020
    Keywords
    Colonic
    Glucose Homeostasis
    Short Chain Fatty Acids
    Advisor
    Duca, Frank A.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Embargo
    Release after 09/15/2021
    Abstract
    The incidence of diabetes, now the 7th leading cause of death in the US, is rising worldwide. Hyperglycemia is a hallmark characteristic of diabetes, resulting in elevated blood glucose levels, due, in part, to chronic elevations in endogenous hepatic glucose production (GP). Normally, small intestinal nutrient-sensing mechanisms trigger negative feedback loops to inhibit GP, thereby maintaining proper glucose regulation. Macronutrients stimulate secretion of gut peptides, which can activate a gut-brain-liver axis to lower hepatic GP. More recently the gut microbiota has been implicated as a salient contributor to energy and glucose homeostasis, with prebiotic, non-digestible carbohydrate treatment, improving glucose tolerance in humans and rodents. One potential mechanism may be through the production of short chain fatty acids (SCFA), which are bacterial breakdown products of non-digestible dietary fibers occurring mainly in the large intestine. SCFAs are known to improve glucose and energy homeostasis but the exact mechanisms remain unknown. SCFAs increase gut peptide release and, therefore, have the potential to activate colonic sensing mechanisms to regulate glucose homeostasis following a meal. However, no one has assessed the postprandial production kinetics of SCFAs nor has anyone tested whether large intestinal SCFAs can lower hepatic glucose production. To examine this, we performed a fasting-refeeding study in both chow and HFD-fed rats and found that refeeding produced significant rises in postprandial large intestinal SCFA concentrations in chow, but not HFD fed rats. Furthermore, decreased postprandial SCFA levels were associated with increased adiposity and glucose intolerance. Utilizing pancreatic basal insulin euglycemic clamps we determined that the colonic administration of either 10mM or 100mM acetate, butyrate, or propionate, which are the 3 main SCFAs, were each able to decrease hepatic glucose production through a GLP-1R mediated neuronal gut-brain-liver axis, facilitated by celiac and hepatic vagal signaling pathways. Collectively, this work demonstrates the glucoregulatory signaling capacity of colonic SCFAs and that HFD induced impairments in postprandial SCFA rises may contribute to glucose dysregulation.
    Type
    text
    Electronic Thesis
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Physiological Sciences
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.