• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Simulating Planetesimal Formation in the Kuiper Belt and Beyond

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_18252_updated_sip1_m.pdf
    Size:
    16.06Mb
    Format:
    PDF
    Download
    Author
    Li, Rixin cc
    Issue Date
    2020
    Keywords
    formation
    hydrodynamics
    instabilities
    planetesimals
    planets
    protoplanetary disks
    Advisor
    Youdin, Andrew
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    A critical step in planet formation is to build super-kilometer-sized planetesimals out of dust particles in gaseous protoplanetary disks. The origin of planetesimals is crucial to understanding the Solar System, exoplanetary systems, and circumstellar disks. In this thesis, I present my work on exploring and better understanding promising planetesimal formation pathways with extensive numerical modeling and robust statistical analyses, with a main focus on the streaming instability (SI), a mechanism to aerodynamically concentrate solids in disks and trigger gravitational collapse to form planetesimals. The first study focuses on the numerical robustness of the SI, where I demonstrate that the nonlinear particle clumping by the SI is robust to various numerical setups. In the next study, I carry out the SI simulations including particle self-gravity with the highest resolution to date, which produces a broad and top-heavy initial mass distribution of planetesimals. Necessitated by analyzing my simulations, I have built and published an efficient clump-finding code, PLAN, capable of robustly identifying and characterizing self-bound clumps. I then present the highlights from analyses of the demographics of planetesimals. I first apply a maximum likelihood estimator to fit a suite of parameterized models with different levels of complexity to the simulated mass distribution. I show that our simulations produce different mass distributions with different aerodynamic properties of the disk and participating solids. I will report the first evidence for a turnover in the low mass end of the planetesimal mass distribution. With PLAN, I also find that the clumps in our simulations possess excess angular momenta that might explain why all planetesimals formed as binaries/multiples and the high binary fraction among Cold Classical Kuiper Belt Objects. Furthermore, the predicted binary orbits show a broad inclination distribution with 80% of prograde orbits, excellently matching the observations of trans-Neptunian binaries. Finally, I conclude with the key results in this thesis and discuss the future directions for planetesimal formation studies, with some pioneering results from my on-going work.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Astronomy
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.