• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Discriminating Changes in Protein Structure Using Tyrosine Conjugation

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_18260_sip1_m.pdf
    Size:
    23.55Mb
    Format:
    PDF
    Download
    Author
    Moinpour, Mahta
    Issue Date
    2020
    Keywords
    conjugation
    low complexity
    protein folding
    triazolinediones
    tyrosine
    Advisor
    Schwartz, Jacob C.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Exploration of protein structure by its solvent-accessible surfaces has been widely exploited in structural biology. Amino acids most commonly targeted for covalent modification of the native folded proteins are lysine and cysteine. For the first time, the present study has leveraged ene-type chemistry targeting tyrosine residues to discriminate those solvent-exposed from those buried. We find that 4-phenyl-3H-1,2,4- triazole-3,5(4H)-dione (PTAD) can conjugate the phenolic group of tyrosine in a manner heavily influenced by the orientation and depth of the residue with respect to the protein surface. We developed a strategy to investigate protein structure by analyzing PTAD conjugations with free tyrosine, protein structure, and found it adaptable to a wide range of analytic technologies, including fluorescence, chromatography, and mass spectrometry. This study shows how the established tyrosine-specific bioconjugation chemistry can be used as an analytical tool to distinguish the conformational states of a protein where traditional structural approaches are limited. Among limitations of the traditional structural techniques, are studies of low complexity proteins, such as tyrosine rich FET proteins, with essential cellular functions in transcription and DNA repair, and mutations associated with some neurodegenerative diseases (Schwartz et al., 2015a). The N-terminal low complexity domains of FET proteins have the ability to drive the formation of non-membrane bound cellular organelles, also known as granular bodies, through a process referred to as phase separation. Low complexity proteins are typically intrinsically disordered or lacking in rigid secondary structure elements. This renders the most popular NMR and X-ray crystallography methods incapable of providing high-resolution structure data and elevates the potential for a new method of structural analysis to reveal a wealth of otherwise unattainable information.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Chemistry
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.