• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Advancing and Addressing Uncertainties in Scenario-Specific Healthcare QMRAs with Multidisciplinary Approaches

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_18270_sip1_m.pdf
    Size:
    5.533Mb
    Format:
    PDF
    Download
    Author
    Wilson, Amanda Marie
    Issue Date
    2020
    Keywords
    exposure modeling
    infection control
    QMRA
    risk assessment
    Advisor
    Reynolds, Kelly A.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The quantitative microbial risk assessment (QMRA) framework continues to develop to address exposure routes beyond its original application in water quality contexts, especially in its use to address healthcare-associated infections. Exposure models used within these QMRAs must be advanced to incorporate multiple exposure routes and to account for not only the magnitude of microbial spread but also spatial patterns of this spread. In this dissertation, an agent-based model integrated with an exposure transfer model was developed to evaluate the contribution of wheelchairs to spatial contamination spread in a healthcare facility and exposures to subsequent patients riding the wheelchair. This integrated framework provided insights into emergent patterns of exposures for subsequent riders on contaminated wheelchairs and spread throughout the facility. Main findings include that disinfection of wheelchairs in between patients may protect future riders under low contamination conditions, and that the frequency of traveled paths is related to heterogeneity of fomite contamination throughout a facility. In analyzing emergent behaviors, the number of wheelchairs had a positive relationship with number of contaminated patches over a specific concentration threshold. Cleaning wheelchairs in between patients weakened this relationship. While the integration of multiple modeling approaches is a future direction of QMRA, uncertainty in mechanisms of microbial spread still need to be addressed in order to improve accuracy in integrated model frameworks. For example, in this work, the exposure transfer model used in this integrated model includes the assumption that transfer occurs according to a concentration gradient. This was evaluated experimentally with bacteriophage transfer efficiency studies and supported the hypothesis that transfer efficiency varies by a ratio of the concentrations on the fingertip and surface prior to contact. These experimental data were then used in an Approximate Bayesian Computation (ABC) analysis to compare two microbial transfer models in their ability to explain the experimental data and offer insights regarding swabbing efficiencies and transfer efficiencies that are challenging to measure experimentally. This analysis demonstrated that swabbing efficiencies and direction-specific transfer efficiencies “balance” exchanges between the fingertip and surface in predicting after-contact concentrations on the fingertip or surface. Future research involves furthering the integration of exposure model frameworks to account for complex transmission systems, especially those that incorporate spatial human behavior. This also necessitates further experimental and mathematical evaluation of these models to advance not only our ability to model complex built environment systems but also to improve our accuracy in estimated exposure and health outcomes.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Environmental Health Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.