• Login
    View Item 
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Rendering light fields for optical system simulation

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    111050E.pdf
    Size:
    1.421Mb
    Format:
    PDF
    Description:
    Final Published Version
    Download
    Author
    Schwiegerling, Jim
    Affiliation
    Univ Arizona, Coll Opt Sci
    Issue Date
    2019-09-09
    Keywords
    Light field
    Image simulation
    Aberrations
    
    Metadata
    Show full item record
    Publisher
    SPIE-INT SOC OPTICAL ENGINEERING
    Citation
    Schwiegerling, J. (2019, September). Rendering light fields for optical system simulation. In Novel Optical Systems, Methods, and Applications XXII (Vol. 11105, p. 111050E). International Society for Optics and Photonics.
    Journal
    NOVEL OPTICAL SYSTEMS, METHODS, AND APPLICATIONS XXII
    Rights
    © 2019 SPIE.
    Collection Information
    This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
    Abstract
    The light field describes the radiance at a given point provided by a ray coming from a particular direction. Integrating the light field for all possible rays passing through that point gives total irradiance. For a static scene, the light field is unique. Cameras act as integrators of the light field. Previously, it was demonstrated that freeware rendering software can be used to simulate the light field entering an arbitrary camera lens. This is accomplished by placing an array of ideal pinhole cameras at the entrance pupil location and rendering. The pinhole camera images encode the ray directions for rays passing through the pinholes. The set of images from this array then describes the light field. Images for real camera lenses with different types of aberrations are then simulated directly from the light field. The advantage of this technique is that the light field only needs to be calculated once for a given scene. Calculation of the light field is computationally expensive and the practicality of implementing high resolution light field simulations on a desktop computer is limited. However, cloud-based rendering services with arrays of CPUs and GPUs are now readily available and affordable. These services enable more realistic simulations and different scenes to be rapidly created. Here, the techniques are demonstrated for different real lens aberration forms.
    ISSN
    0277-786X
    DOI
    10.1117/12.2528128
    Version
    Final published version
    ae974a485f413a2113503eed53cd6c53
    10.1117/12.2528128
    Scopus Count
    Collections
    UA Faculty Publications

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.