Omecamtiv mecarbil lowers the contractile deficit in a mouse model of nebulin-based nemaline myopathy
Name:
journal.pone.0224467.pdf
Size:
1.650Mb
Format:
PDF
Description:
Final Published Version
Affiliation
Univ Arizona, Dept Cellular & Mol MedIssue Date
2019-11-13
Metadata
Show full item recordPublisher
PUBLIC LIBRARY SCIENCECitation
Lindqvist, J., Lee, E.-J., Karimi, E., Kolb, J., & Granzier, H. (2019). Omecamtiv mecarbil lowers the contractile deficit in a mouse model of nebulin-based nemaline myopathy. PloS one, 14(11), e0224467.Journal
PLOS ONERights
© 2019 Lindqvist et al. This is an open access article distributed under the terms of the Creative Commons Attribution License.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
Nemaline myopathy (NEM) is a congenital neuromuscular disorder primarily caused by nebulin gene (NEB) mutations. NEM is characterized by muscle weakness for which currently no treatments exist. In NEM patients a predominance of type I fibers has been found. Thus, therapeutic options targeting type I fibers could be highly beneficial for NEM patients. Because type I muscle fibers express the same myosin isoform as cardiac muscle (Myh7), the effect of omecamtiv mecarbil (OM), a small molecule activator of Myh7, was studied in a nebulin-based NEM mouse model (Neb cKO). Skinned single fibers were activated by exogenous calcium and force was measured at a wide range of calcium concentrations. Maximal specific force of type I fibers was much less in fibers from Neb cKO animals and calcium sensitivity of permeabilized single fibers was reduced (pCa(50) 6.12 +/- 0.08 (cKO) vs 6.36 +/- 0.08 (CON)). OM increased the calcium sensitivity of type I single muscle fibers. The greatest effect occurred in type I fibers from Neb cKO muscle where OM restored the calcium sensitivity to that of the control type I fibers. Forces at submaximal activation levels (pCa 6.0-6.5) were significantly increased in Neb cKO fibers (similar to 50%) but remained below that of control fibers. OM also increased isometric force and power during isotonic shortening of intact whole soleus muscle of Neb cKO mice, with the largest effects at physiological stimulation frequencies. We conclude that OM has the potential to improve the quality of life of NEM patients by increasing the force of type I fibers at submaximal activation levels.Note
Open access journalISSN
1932-6203PubMed ID
31721788Version
Final published versionae974a485f413a2113503eed53cd6c53
10.1371/journal.pone.0224467
Scopus Count
Collections
Except where otherwise noted, this item's license is described as © 2019 Lindqvist et al. This is an open access article distributed under the terms of the Creative Commons Attribution License.
Related articles
- Nebulin deficiency in adult muscle causes sarcomere defects and muscle-type-dependent changes in trophicity: novel insights in nemaline myopathy.
- Authors: Li F, Buck D, De Winter J, Kolb J, Meng H, Birch C, Slater R, Escobar YN, Smith JE 3rd, Yang L, Konhilas J, Lawlor MW, Ottenheijm C, Granzier HL
- Issue date: 2015 Sep 15
- Troponin activator augments muscle force in nemaline myopathy patients with nebulin mutations.
- Authors: de Winter JM, Buck D, Hidalgo C, Jasper JR, Malik FI, Clarke NF, Stienen GJ, Lawlor MW, Beggs AH, Ottenheijm CA, Granzier H
- Issue date: 2013 Jun
- Deleting exon 55 from the nebulin gene induces severe muscle weakness in a mouse model for nemaline myopathy.
- Authors: Ottenheijm CA, Buck D, de Winter JM, Ferrara C, Piroddi N, Tesi C, Jasper JR, Malik FI, Meng H, Stienen GJ, Beggs AH, Labeit S, Poggesi C, Lawlor MW, Granzier H
- Issue date: 2013 Jun
- Functional Characterization of the Intact Diaphragm in a Nebulin-Based Nemaline Myopathy (NM) Model-Effects of the Fast Skeletal Muscle Troponin Activator tirasemtiv.
- Authors: Lee EJ, Kolb J, Hwee DT, Malik FI, Granzier HL
- Issue date: 2019 Oct 10
- Muscle weakness in respiratory and peripheral skeletal muscles in a mouse model for nebulin-based nemaline myopathy.
- Authors: Joureau B, de Winter JM, Stam K, Granzier H, Ottenheijm CA
- Issue date: 2017 Jan