• Login
    View Item 
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Predicting the Solar Wind at the Parker Solar Probe Using an Empirically Driven MHD Model

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Kim_2020_ApJS_246_40.pdf
    Size:
    1.396Mb
    Format:
    PDF
    Description:
    Final Published Version
    Download
    Author
    Kim, T. K.
    Pogorelov, N. V.
    Arge, C. N.
    Henney, C. J.
    Jones-Mecholsky, S. I.
    Smith, W. P.
    Bale, S. D. cc
    Bonnell, J. W.
    Dudok de Wit, T.
    Goetz, K.
    Harvey, P. R.
    MacDowall, R. J.
    Malaspina, D. M.
    Pulupa, M.
    Kasper, J. C.
    Korreck, K. E.
    Stevens, M.
    Case, A. W.
    Whittlesey, P.
    Livi, R.
    Larson, D. E.
    Klein, K. G.
    Zank, G. P.
    Show allShow less
    Affiliation
    Univ Arizona, Sch Phys & Astron
    Issue Date
    2020-02-03
    
    Metadata
    Show full item record
    Publisher
    IOP PUBLISHING LTD
    Citation
    Kim, T. K., Pogorelov, N. V., Arge, C. N., Henney, C. J., Jones-Mecholsky, S. I., Smith, W. P., ... & Zank, G. P. (2020). Predicting the Solar Wind at the Parker Solar Probe Using an Empirically Driven MHD Model. The Astrophysical Journal Supplement Series, 246(2), 40.
    Journal
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES
    Rights
    © 2020. The American Astronomical Society. All rights reserved.
    Collection Information
    This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
    Abstract
    Since its launch on 2018 August 12, Parker Solar Probe (PSP) has completed its first and second orbits around the Sun, having reached down to 35.7 solar radii at each perihelion. In anticipation of the exciting new data at such unprecedented distances, we have simulated the global 3D heliosphere using an MHD model coupled with a semi-empirical coronal model using the best available photospheric magnetograms as input. We compare our heliospheric MHD simulation results with in situ measurements along the PSP trajectory from its launch to the completion of the second orbit, with particular emphasis on the solar wind structure around the first two solar encounters. Furthermore, we show our model prediction for the third perihelion, which occurred on 2019 September 1. Comparison of the MHD results with PSP observations provides new insights into solar wind acceleration. Moreover, PSP observations reveal how accurately the Air Force Data Assimilative Photospheric flux Transport-Wang-Sheeley-Arge-based predictions work throughout the inner heliosphere.
    ISSN
    0067-0049
    EISSN
    1538-4365
    DOI
    10.3847/1538-4365/ab58c9
    Version
    Final published version
    ae974a485f413a2113503eed53cd6c53
    10.3847/1538-4365/ab58c9
    Scopus Count
    Collections
    UA Faculty Publications

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.