• Login
    View Item 
    •   Home
    • Journals and Magazines
    • Society for Range Management Journal Archives
    • Rangeland Ecology & Management / Journal of Range Management
    • Journal of Range Management, Volume 8 (1955)
    • Journal of Range Management, Volume 8, Number 2 (March 1955)
    • View Item
    •   Home
    • Journals and Magazines
    • Society for Range Management Journal Archives
    • Rangeland Ecology & Management / Journal of Range Management
    • Journal of Range Management, Volume 8 (1955)
    • Journal of Range Management, Volume 8, Number 2 (March 1955)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Balance of Ration Nutrients and Efficiency of Feed Utilization by Ruminants. A Review.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    4649-4529-1-PB.pdf
    Size:
    915.9Kb
    Format:
    PDF
    Download
    Author
    McCullough, M. E.
    Issue Date
    1955-03-01
    Keywords
    Ration Nutrients
    Feed Efficiency
    ruminants
    Review
    metabolism
    Energy Conversion
    Balanced Ration
    Nutrient Interrelationships
    Nutrient Balance
    nutrient utilization
    genetics
    TDN
    Rations
    animal production
    calcium
    Cottonseed Cake
    minerals
    Energy
    digestibility
    intake
    protein
    phosphorus
    utilization
    Maintenance
    sheep
    cattle
    Show allShow less
    
    Metadata
    Show full item record
    Citation
    McCullough, M. E. (1955). Balance of ration nutrients and efficiency of feed utilization by ruminants. A review.. Journal of Range Management, 8(2), 61-65.
    Publisher
    Society for Range Management
    Journal
    Journal of Range Management
    URI
    http://hdl.handle.net/10150/649835
    DOI
    10.2307/3894405
    Additional Links
    https://rangelands.org/
    Type
    Article
    text
    Language
    en
    ISSN
    0022-409X
    ae974a485f413a2113503eed53cd6c53
    10.2307/3894405
    Scopus Count
    Collections
    Journal of Range Management, Volume 8, Number 2 (March 1955)

    entitlement

     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Animal health problems caused by silicon and other mineral imbalances

      Mayland, H. F.; Shewmaker, G. E. (Society for Range Management, 2001-07-01)
      Plant growth depends upon C, H, O, and at least 13 mineral elements. Six of these (N, K, Ca, Mg, P, and S) macro-elements normally occur in plants at concentrations greater than 1,000 mg kg(-1) level. The remaining micro-elements (B, Cl, Cu, Fe, Mn, Mo, and Zn) normally occur in plants at concentrations less than 50 mg kg(-1). Trace amounts of other elements (e.g., Co, Na, Ni, and Si) may be beneficial for plants. Silicon concentrations may range upwards to 50,000 mg kg(-1) in some forage grasses. Mineral elements required by animals include the macro-elements Ca, Cl, K, Mg, N, Na, P, and S; the trace or micro-elements Co, Cu, Fe, I, Mn, Mo, Se, and Zn; and the ultra-trace elements Cr, Li, and Ni. When concentrations of these elements in forages get 'out of whack' their bioavailability to animals may be jeopardized. Interactions of K x Mg x Ca, Ca x P, Se x S, and Cu x Mo x S are briefly mentioned here because more detail will be found in the literature. Limited published information is available on Si, so we have provided more detail. Silicon provides physical support to plants and may reduce susceptibility to pests. However, Si may have negative effects on digestibility and contribute to urinary calculi in animals.
    • Thumbnail

      Contrasting responses of Intermountain West grasses to soil nitrogen

      Monaco, T. A.; Johnson, D. A.; Norton, J. M.; Jones, T. A.; Connors, K. J.; Norton, J. B.; Redinbaugh, M. B. (Society for Range Management, 2003-05-01)
      The mechanisms responsible for soil-N-mediated species replacement of native perennial grasses by the invasive annual grasses cheatgrass (Bromus tectorum L.) and medusahead (Taeniatherum caput-medusae [L.] Nevski) on rangelands are not completely understood. In addition, the contributions of distinct forms of inorganic N (i.e., NH4+ and NO3-) to these shifts in species composition are currently unclear. Consequently, we conducted a greenhouse experiment to test 2 hypotheses: 1) that low N availability reduces growth (root and shoot) and N allocation of invasive annual seedlings more than native perennial species, and 2) that seedling growth and N allocation of invasive annual grasses is more responsive than native perennial grasses when supplied with NO3- relative to NH4+. We grew seedlings of 2 annual grasses and the native perennial grasses bluebunch wheatgrass (Pseudoroegneria spicata [Pursh] A. Love), and 4 populations of squirreltail (Elymus elymoides [Raf.] Swezey; E. multisetus [J.G. Smith] M.E. Jones) in separate pots and exposed them to treatments differing in N form and availability for 17 weeks. Unexpectedly, root and shoot growth of annual grasses were equal or greater than native perennial grasses under low N availability. Annual grasses took up more NO3- and allocated more growth and N to shoots than the perennial grasses (P 0.05). Perennial grasses had significantly greater root:shoot dry mass ratios than the invasive annual grasses across treatments (P 0.05). Invasive annual and native perennial grasses both had greater (P 0.05) shoot and root mass and allocated more N to these structures when supplied with NO3- relative to NH4+. The ecological implications of these growth and N allocation patterns in response to N availability and form provide important clues regarding the specific traits responsible for differences in competitive ability between invasive annual and native perennial grasses on semiarid rangelands.
    • Thumbnail

      Soil carbon, nitrogen and phosphorus in modified rangeland communities

      Whalen, J. K.; Willms, W. D.; Dormaar, J. F. (Society for Range Management, 2003-11-01)
      Rangelands contain between 10 and 30% of global soil organic C reserves and may be an important sink for atmospheric CO2, but less C tends to be stored in rangelands cultivated for agricultural use than undisturbed rangelands. Establishing perennial plant communities on formerly cultivated rangelands is expected to stabilize soil properties and increase the amount of C stored in rangeland soils, but there is little information on what plant communities are most effective at building soil C reserves. The purpose of this study was to compare soil C, N, and P pools in ungrazed native rangelands with ungrazed, unfertilized rangelands that were cultivated and then 1) abandoned, 2) seeded with non-native perennial grasses or legumes, or 3) cropped annually for 5 to 6 years. Three study sites in southern Alberta, Canada with native Stipa-Bouteloua, Stipa-Bouteloua-Agropyron and Festuca campestris plant communities represented the major ecotypes of the Northern Great Plains. The total C, N, and P content of rangeland soils were greatest at the Festuca campestris site, followed by the Stipa-Bouteloua-Agropyron and Stipa-Bouteloua sites, probably due to climatic conditions (precipitation and temperature). Generally, soils under modified plant communities contained less total C and N than soils under native rangeland, but the total P content was related more to site preparation than experimental treatments. Soils under alfalfa, orchardgrass and bromegrass tended to have more total C and N than soils cultivated annually in continuous wheat or wheat-fallow systems. The accumulation of C and N in soils under permanent cover was not related to net primary productivity and may be influenced more by the chemical composition and rate of decomposition of plant residues.
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.