Evidence from the H3 Survey That the Stellar Halo Is Entirely Comprised of Substructure
Name:
Naidu_2020_ApJ_901_48.pdf
Size:
10.35Mb
Format:
PDF
Description:
Final Published Version
Author
Naidu, Rohan P.Conroy, Charlie
Bonaca, Ana
Johnson, Benjamin D.

Ting, Yuan-Sen
Caldwell, Nelson

Zaritsky, Dennis
Cargile, Phillip A.
Affiliation
Univ Arizona, Steward ObservIssue Date
2020-09-21Keywords
Galaxy stellar halosGalaxy kinematics
Milky Way evolution
Galaxy evolution
Galaxy formation
Milky Way formation
Milky Way Galaxy
Milky Way stellar halo
Metadata
Show full item recordPublisher
IOP PUBLISHING LTDCitation
Naidu, R. P., Conroy, C., Bonaca, A., Johnson, B. D., Ting, Y. S., Caldwell, N., ... & Cargile, P. A. (2020). Evidence from the H3 Survey that the Stellar Halo is Entirely Comprised of Substructure. The Astrophysical Journal, 901(1), 48.Journal
ASTROPHYSICAL JOURNALRights
© 2020. The American Astronomical Society. All rights reserved.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
In the ΛCDM paradigm, the Galactic stellar halo is predicted to harbor the accreted debris of smaller systems. To identify these systems, the H3 Spectroscopic Survey, combined with Gaia, is gathering 6D phase-space and chemical information in the distant Galaxy. Here we present a comprehensive inventory of structure within 50 kpc from the Galactic center using a sample of 5684 giants at alpha disk, the in situ halo (disk stars heated to eccentric orbits), Sagittarius (Sgr), Gaia-Sausage-Enceladus (GSE), the Helmi Streams, Sequoia, and Thamnos. Additionally, we identify the following new structures: (i) Aleph ([Fe/H] = -0.5), a low-eccentricity structure that rises a surprising 10 kpc off the plane, (ii) and (iii) Arjuna ([Fe/H] = -1.2) and I'itoi ([Fe/H] < -2), which comprise the high-energy retrograde halo along with Sequoia, and (iv) Wukong ([Fe/H] = -1.6), a prograde phase-space overdensity chemically distinct from GSE. For each structure, we provide [Fe/H], [alpha/Fe], and orbital parameters. Stars born within the Galaxy are a major component at<CDATA<i(60%), but their relative fraction declines sharply to less than or similar to 5% past 15 kpc. Beyond 15 kpc, >80% of the halo is built by two massive (M similar to 10(8)-10(9)M) accreted dwarfs: GSE ([Fe/H] = -1.2) within 25 kpc and Sgr ([Fe/H] = -1.0) beyond 25 kpc. This explains the relatively high overall metallicity of the halo ([Fe/H] -1.2). We attribute greater than or similar to 95% of the sample to one of the listed structures, pointing to a halo built entirely from accreted dwarfs and heating of the disk.ISSN
0004-637XEISSN
1538-4357Version
Final published versionae974a485f413a2113503eed53cd6c53
10.3847/1538-4357/abaef4
Scopus Count
Collections
Related items
Showing items related by title, author, creator and subject.
-
The Faint End of the Centaurus A Satellite Luminosity FunctionCrnojević, D.; Sand, D. J.; Bennet, P.; Pasetto, S.; Spekkens, K.; Caldwell, N.; Guhathakurta, P.; McLeod, B.; Seth, A.; Simon, J. D.; et al. (IOP PUBLISHING LTD, 2019-02-10)The Panoramic Imaging Survey of Centaurus and Sculptor (PISCeS) is constructing a wide-field map of the resolved stellar populations in the extended halos of these two nearby, prominent galaxies. We present new Magellan/Megacam imaging of a similar to 3 deg(2) area around Centaurus A (Cen A), which filled in much of our coverage to its south, leaving a nearly complete halo map out to a projected radius of similar to 150 kpc and allowing us to identify two new resolved dwarf galaxies. We have additionally obtained deep Hubble Space Telescope (HST) optical imaging of 11 out of the 13 candidate dwarf galaxies identified around Cen A and presented in Crnojevic et al. 2016a: seven are confirmed to be satellites of Cen A, while four are found to be background galaxies. We derive accurate distances, structural parameters, luminosities, and photometric metallicities for the seven candidates confirmed by our HST/ACS imaging. We further study the stellar population along the similar to 60 kpc long (in projection) stream associated with Dw3, which likely had an initial brightness of M-V similar to -15 and shows evidence for a metallicity gradient along its length. Using the total sample of 11 dwarf satellites discovered by the PISCeS survey, as well as 13 brighter previously known satellites of Cen A, we present a revised galaxy luminosity function for the Cen A group down to a limiting magnitude of M-V similar to -8, which has a slope of -1.14 +/- 0.17, comparable to that seen in the Local Group and in other nearby groups of galaxies.
-
Nuclear starburst activity induced by elongated bulges in spiral galaxiesKim, Eunbin; Kim, Sungsoo S; Choi, Yun-Young; Lee, Gwang-Ho; de Grijs, Richard; Lee, Myung Gyoon; Hwang, Ho Seong; Univ Arizona, Steward Observ (OXFORD UNIV PRESS, 2018-06-05)We study the effects of bulge elongation on the star formation activity in the centres of spiral galaxies using the data from the Sloan Digital Sky Survey Data Release 7. We construct a volume-limited sample of face-on spiral galaxies with Mr < −19.5 mag at 0.02 ≤ z < 0.055 by excluding barred galaxies, where the aperture of the SDSS spectroscopic fibre covers the bulges of the galaxies. We adopt the ellipticity of bulges measured by Simard et al., who performed two-dimensional bulge + disc decompositions using the SDSS images of galaxies, and identify nuclear starbursts using the fibre specific star formation rates derived from the SDSS spectra. We find a statistically significant correlation between bulge elongation and nuclear starbursts in the sense that the fraction of nuclear starbursts increases with bulge elongation. This correlation is more prominent for fainter and redder galaxies, which exhibit higher ratios of elongated bulges. We find no significant environmental dependence of the correlation between bulge elongation and nuclear starbursts. These results suggest that non-axisymmetric bulges can efficiently feed the gas into the centre of galaxies to trigger nuclear starburst activity.
-
Exploring the dust content of galactic winds with Herschel – II. Nearby dwarf galaxiesMcCormick, Alexander; Veilleux, Sylvain; Meléndez, Marcio; Martin, Crystal L; Bland-Hawthorn, Joss; Cecil, Gerald; Heitsch, Fabian; Müller, Thomas; Rupke, David S N; Engelbracht, Chad; et al. (OXFORD UNIV PRESS, 2018-06)We present the results from an analysis of deep Herschel Space Observatory observations of six nearby dwarf galaxies known to host galactic-scale winds. The superior far-infrared sensitivity and angular resolution of Herschel have allowed detection of cold circumgalactic dust features beyond the stellar components of the host galaxies traced by Spitzer 4.5 mu m images. Comparisons of these cold dust features with ancillary data reveal an imperfect spatial correlation with the ionized gas and warm dust wind components. We find that typically similar to 10-20 per cent of the total dust mass in these galaxies resides outside of their stellar discs, but this fraction reaches similar to 60 per cent in the case of NGC 1569. This galaxy also has the largest metal-licity (O/H) deficit in our sample for its stellar mass. Overall, the small number of objects in our sample precludes drawing strong conclusions on the origin of the circumgalactic dust. We detect no statistically significant trends with star formation properties of the host galaxies, as might be expected if the dust were lifted above the disc by energy inputs from ongoing star formation activity. Although a case for dust entrained in a galactic wind is seen in NGC 1569, in all cases, we cannot rule out the possibility that some of the circumgalactic dust might be associated instead with gas accreted or removed from the disc by recent galaxy interaction events, or that it is part of the outer gas-rich portion of the disc that lies below the sensitivity limit of the Spitzer 4.5 mu m data.