• Login
    View Item 
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Sparse-view, short-scan, dedicated cone-beam breast computed tomography: image quality assessment

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Rev02_ShortScan_SparseView_IQ_ ...
    Size:
    6.935Mb
    Format:
    PDF
    Description:
    Final Accepted Manuscript
    Download
    Author
    Tseng, Hsin Wu
    Karellas, Andrew
    Vedantham, Srinivasan
    Affiliation
    Univ Arizona, Dept Med Imaging
    Univ Arizona, Dept Biomed Engn
    Issue Date
    2020-09-28
    Keywords
    Dedicated breast CT
    sparse view
    short scan
    statistical image reconstruction
    image quality
    breast cancer
    
    Metadata
    Show full item record
    Publisher
    IOP PUBLISHING LTD
    Citation
    Tseng, H. W., Karellas, A., & Vedantham, S. (2020). Sparse-view, short-scan, dedicated cone-beam breast computed tomography: image quality assessment. Biomedical Physics & Engineering Express, 6(6), 065015.
    Journal
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS
    Rights
    © 2020 IOP Publishing Ltd.
    Collection Information
    This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
    Abstract
    The purpose of this study is to quantify the impact of sparse-view acquisition in short-scan trajectories, compared to 360-degrees full-scan acquisition, on image quality measures in dedicated cone-beam breast computed tomography (BCT). Projection data from 30 full-scan (360-degrees; 300 views) BCT exams with calcified lesions were selected from an existing clinical research database. Feldkamp-Davis-Kress (FDK) reconstruction of the full-scan data served as the reference. Projection data corresponding to two short-scan trajectories, 204 and 270-degrees, which correspond to the minimum and maximum angular range achievable in a cone-beam BCT system were selected. Projection data were retrospectively sampled to provide 225, 180, and 168 views for 270-degrees short-scan, and 170 views for 204-degrees short-scan. Short-scans with 180 and 168 views in 270-degrees used non-uniform angular sampling. A fast, iterative, total variation-regularized, statistical reconstruction technique (FIRST) was used for short-scan image reconstruction. Image quality was quantified by variance, signal-difference to noise ratio (SDNR) between adipose and fibroglandular tissues, full-width at half-maximum (FWHM) of calcifications in two orthogonal directions, as well as, bias and root-mean-squared-error (RMSE) computed with respect to the reference full-scan FDK reconstruction. The median values of bias (8.6 x 10(-4)-10.3 x 10(-4)cm(-1)) and RMSE (6.8 x 10(-6)-9.8 x 10(-6)cm(-1)) in the short-scan reconstructions, computed with the full-scan FDK as the reference were close to, but not zero (P < 0.0001, one-sample median test). The FWHM of the calcifications in the short-scan reconstructions did not differ significantly from the reference FDK reconstruction (P > 0.118), except along the superior-inferior direction for the short-scan reconstruction with 168 views in 270-degrees (P = 0.046). The variance and SDNR from short-scan reconstructions were significantly improved compared to the full-scan FDK reconstruction (P < 0.0001). This study demonstrates the feasibility of the short-scan, sparse-view, compressed sensing-based iterative reconstruction. This study indicates that shorter scan times and reduced radiation dose without sacrificing image quality are potentially feasible.
    Note
    12 month embargo; published 28 September 2020
    ISSN
    2057-1976
    EISSN
    2057-1976
    DOI
    10.1088/2057-1976/abb834
    Version
    Final accepted manuscript
    ae974a485f413a2113503eed53cd6c53
    10.1088/2057-1976/abb834
    Scopus Count
    Collections
    UA Faculty Publications

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.