Show simple item record

dc.contributor.authorBanzatti, Andrea
dc.contributor.authorPascucci, Ilaria
dc.contributor.authorBosman, Arthur D.
dc.contributor.authorPinilla, Paola
dc.contributor.authorSalyk, Colette
dc.contributor.authorHerczeg, Gregory J.
dc.contributor.authorPontoppidan, Klaus M.
dc.contributor.authorVazquez, Ivan
dc.contributor.authorWatkins, Andrew
dc.contributor.authorKrijt, Sebastiaan
dc.contributor.authorHendler, Nathan
dc.contributor.authorLong, Feng
dc.date.accessioned2021-02-09T22:07:44Z
dc.date.available2021-02-09T22:07:44Z
dc.date.issued2020-11-10
dc.identifier.citationBanzatti, A., Pascucci, I., Bosman, A. D., Pinilla, P., Salyk, C., Herczeg, G. J., ... & Long, F. (2020). Hints for icy pebble migration feeding an oxygen-rich chemistry in the inner planet-forming region of disks. The Astrophysical Journal, 903(2), 124.en_US
dc.identifier.issn0004-6256
dc.identifier.doi10.3847/1538-4357/abbc1a
dc.identifier.urihttp://hdl.handle.net/10150/652204
dc.description.abstractWe present a synergic study of protoplanetary disks to investigate links between inner-disk gas molecules and the large-scale migration of solid pebbles. The sample includes 63 disks where two types of measurements are available: (1) spatially resolved disk images revealing the radial distribution of disk pebbles (millimeter to centimeter dust grains), from millimeter observations with the Atacama Large Millimeter/Submillimeter Array or the Submillimeter Array, and (2) infrared molecular emission spectra as observed with Spitzer. The line flux ratios of H2O with HCN, C2H2, and CO2 all anticorrelate with the dust disk radius R-dust, expanding previous results found by Najita et al. for HCN/H2O and the dust disk mass. By normalization with the dependence on accretion luminosity common to all molecules, only the H2O luminosity maintains a detectable anticorrelation with disk radius, suggesting that the strongest underlying relation is between H2O and R-dust. If R-dust is set by large-scale pebble drift, and if molecular luminosities trace the elemental budgets of inner-disk warm gas, these results can be naturally explained with scenarios where the inner disk chemistry is fed by sublimation of oxygen-rich icy pebbles migrating inward from the outer disk. Anticorrelations are also detected between all molecular luminosities and the infrared index n(13-30), which is sensitive to the presence and size of an inner-disk dust cavity. Overall, these relations suggest a physical interconnection between dust and gas evolution, both locally and across disk scales. We discuss fundamental predictions to test this interpretation and study the interplay between pebble drift, inner disk depletion, and the chemistry of planet-forming material.en_US
dc.language.isoenen_US
dc.publisherIOP PUBLISHING LTDen_US
dc.rights© 2020. The American Astronomical Society. All rights reserved.en_US
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en_US
dc.subjectCircumstellar disksen_US
dc.subjectProtoplanetary disksen_US
dc.subjectPlanetary system formationen_US
dc.subjectMolecular spectroscopyen_US
dc.subjectMolecular gasen_US
dc.subjectMillimeter astronomyen_US
dc.subjectInfrared astronomyen_US
dc.subjectPre-main sequence starsen_US
dc.titleHints for Icy Pebble Migration Feeding an Oxygen-rich Chemistry in the Inner Planet-forming Region of Disksen_US
dc.typeArticleen_US
dc.identifier.eissn1538-4357
dc.contributor.departmentUniv Arizona, Dept Planetary Scien_US
dc.contributor.departmentUniv Arizona, Dept Astronen_US
dc.identifier.journalASTROPHYSICAL JOURNALen_US
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.en_US
dc.eprint.versionFinal published versionen_US
dc.source.journaltitleThe Astrophysical Journal
dc.source.volume903
dc.source.issue2
dc.source.beginpage124
refterms.dateFOA2021-02-09T22:07:54Z


Files in this item

Thumbnail
Name:
Banzatti_2020_ApJ_903_124.pdf
Size:
1.632Mb
Format:
PDF
Description:
Final Published Version

This item appears in the following Collection(s)

Show simple item record