Memory Effects in the Production of Benzene for Radiocarbon Dating
dc.contributor.author | Radnell, C. J. | |
dc.contributor.author | Muller, A. B. | |
dc.date.accessioned | 2021-02-11T19:31:24Z | |
dc.date.available | 2021-02-11T19:31:24Z | |
dc.date.issued | 1980-01-01 | |
dc.identifier.citation | Radnell, C. J., & Muller, A. B. (1980). Memory effects in the production of benzene for radiocarbon dating. Radiocarbon, 22(2), 479-486. | |
dc.identifier.issn | 0033-8222 | |
dc.identifier.doi | 10.1017/S0033822200009796 | |
dc.identifier.uri | http://hdl.handle.net/10150/652412 | |
dc.description.abstract | The use of materials having high levels of 14C activity (up to 113 times the activity of modern carbon) enabled a quantitative analysis of the magnitude and sites of memory occurring in the routine synthesis of benzene, via lithium carbide, for radiocarbon dating. Memory may be expressed as the percentage or fractional contribution of carbon from sources other than the original sample in this synthesis. Although tritium and radon contamination have also been found, the major site of memory was the inner surface of the stainless steel reaction vessel used for lithium carbide production. Up to 1 percent memory has been found there under extreme conditions in the routine dating system at Harwell. Values of half to one-third this size were more usual, but even etching and scouring the inner surface of the reaction vessel reduced the memory only by a factor of four. This lower limit is believed to exist because of the carburization and decarburization of steel which occurs at the temperature required for the production of lithium carbide. The levels of memory found are of the same order as the levels of significance associated with present radiocarbon techniques. With the accuracy and extended chronologies expected from direct 14C measurement by accelerator techniques, these levels of memory become increasingly important in the preparation of acetylene and pyrolitic graphite (via lithium carbide) used as target materials. This effect, however, can be limited by lowering the temperature of the carbide reaction stage or by lining or impregnating the lithium carbide reaction vessel with some carbon-impermeable alloy or material. | |
dc.language.iso | en | |
dc.publisher | American Journal of Science | |
dc.relation.url | http://radiocarbon.webhost.uits.arizona.edu/ | |
dc.rights | Copyright © The American Journal of Science | |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | |
dc.title | Memory Effects in the Production of Benzene for Radiocarbon Dating | |
dc.type | Article | |
dc.type | text | |
dc.identifier.journal | Radiocarbon | |
dc.description.note | This material was digitized as part of a cooperative project between Radiocarbon and the University of Arizona Libraries. | |
dc.description.collectioninformation | The Radiocarbon archives are made available by Radiocarbon and the University of Arizona Libraries. Contact lbry-journals@email.arizona.edu for further information. | |
dc.eprint.version | Final published version | |
dc.description.admin-note | Migrated from OJS platform February 2021 | |
dc.source.volume | 22 | |
dc.source.issue | 2 | |
dc.source.beginpage | 479 | |
dc.source.endpage | 486 | |
refterms.dateFOA | 2021-02-11T19:31:24Z |