A High-Precision Calibration of the AD Radiocarbon Time Scale
dc.contributor.author | Stuiver, Minze | |
dc.date.accessioned | 2021-02-11T19:51:41Z | |
dc.date.available | 2021-02-11T19:51:41Z | |
dc.date.issued | 1982-01-01 | |
dc.identifier.citation | Minze, S. (1982). A high-precision calibration of the AD radiocarbon time scale. Radiocarbon, 24(1), 1-26. | |
dc.identifier.issn | 0033-8222 | |
dc.identifier.doi | 10.1017/S0033822200004859 | |
dc.identifier.uri | http://hdl.handle.net/10150/652601 | |
dc.description.abstract | A high-precision calibration curve, derived from the radiocarbon age determinations of 195 decade samples spanning the AD 1 to 1950 interval, is presented. Though derived for the Pacific Northwest and California, the curve can be used for a large part of the northern hemisphere. This is proven by the radiocarbon ages of contemporaneous sample pairs which are, in most instances, identical within the quoted precision. Two sets of single-year data reveal no evidence for an 11-year cycle with an amplitude beyond the 12-year measuring precision. This indicates that the calibration curve is also applicable for single-year 14C samples. Analysis of the Seattle data sets and comparison with those published by the Belfast, La Jolla, and Heidelberg laboratories show that the total variability in a radiocarbon age determination is often larger than that predicted from the quoted errors. Upper limits for the error multiplier (ie, the factor with which the quoted error has to be multiplied to obtain the overall laboratory variability) are estimated at 1.5 for Seattle and Belfast, 1.1 to 1.4 for La Jolla, and 2.0 for Heidelberg. The comparisons with Belfast, La Jolla, and Heidelberg also reveal offsets with the Seattle calibration curve of, respectively, 4, 27 to 55, and 58 years. These offsets are most likely due to laboratory bias. An improvement of the present calibration curve by combining data sets from other laboratories will only be possible when offsets and error multipliers are precisely known through interlaboratory calibration. | |
dc.language.iso | en | |
dc.publisher | American Journal of Science | |
dc.relation.url | http://radiocarbon.webhost.uits.arizona.edu/ | |
dc.rights | Copyright © The American Journal of Science | |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | |
dc.subject | Pseudotsuga Menziesii | |
dc.subject | Sequioradendron giganteum | |
dc.subject | Pacific Coast | |
dc.subject | Western U.S. | |
dc.subject | instruments | |
dc.subject | vegetation | |
dc.subject | Holocene | |
dc.subject | time scales | |
dc.subject | United States | |
dc.subject | Cenozoic | |
dc.subject | Quaternary | |
dc.subject | geochronology | |
dc.subject | C 14 | |
dc.subject | carbon | |
dc.subject | dates | |
dc.subject | isotopes | |
dc.subject | radioactive isotopes | |
dc.subject | absolute age | |
dc.title | A High-Precision Calibration of the AD Radiocarbon Time Scale | |
dc.type | Article | |
dc.type | text | |
dc.identifier.journal | Radiocarbon | |
dc.description.note | This material was digitized as part of a cooperative project between Radiocarbon and the University of Arizona Libraries. | |
dc.description.collectioninformation | The Radiocarbon archives are made available by Radiocarbon and the University of Arizona Libraries. Contact lbry-journals@email.arizona.edu for further information. | |
dc.eprint.version | Final published version | |
dc.description.admin-note | Migrated from OJS platform February 2021 | |
dc.source.volume | 24 | |
dc.source.issue | 1 | |
dc.source.beginpage | 1 | |
dc.source.endpage | 26 | |
refterms.dateFOA | 2021-02-11T19:51:41Z |