Issue Date
1986-01-01Keywords
Cape Province regionCape Province South Africa
Gauteng South Africa
Lesotho
Natal South Africa
Orange Free State South Africa
Pretoria South Africa
Swaziland
Transvaal South Africa
Zambia
South Africa
Zimbabwe
East Africa
Southern Africa
Africa
archaeology
Holocene
stratigraphy
sediments
Cenozoic
charcoal
Quaternary
geochronology
C 14
carbon
dates
isotopes
radioactive isotopes
absolute age
Metadata
Show full item recordCitation
Vogel, J. C., Fuls, A., & Visser, E. (1986). Pretoria radiocarbon dates III. Radiocarbon, 28(3), 1133-1172.Publisher
American Journal of ScienceJournal
RadiocarbonAdditional Links
http://radiocarbon.webhost.uits.arizona.edu/Type
Articletext
Language
enISSN
0033-8222ae974a485f413a2113503eed53cd6c53
10.1017/S003382220002018X
Scopus Count
Collections
Related items
Showing items related by title, author, creator and subject.
-
Response of the Black Mountain, South Africa, sulfide deposit to various geophysical techniques and implications for exploration of similar depositsStevenson, Frederick (The University of Arizona., 1985)
-
Oceanic Radiocarbon Between Antarctica and South Africa Along WOCE Section 16 at 30 Degrees ELeboucher, Viviane; Orr, James; Jean-Baptiste, Philippe; Arnold, Maurice; Monfray, Patrick; Tisnérat-Laborde Nadine; Poisson, Alain; Duplessy, Jean-Claude (Department of Geosciences, The University of Arizona, 1999-01-01)Accelerator mass spectrometry (AMS) radiocarbon measurements were made on 120 samples collected between Antarctica and South Africa along 30 degrees E during the WOCE-France CIVA1 campaign in February 1993. Our principal objective was to complement the Southern Ocean's sparse existing data set in order to improve the 14C benchmark used for validating ocean carbon-cycle models, which disagree considerably in this region. Measured 14C is consistent with the theta -S characteristics of CIVA1. Antarctic Intermediate Water (AAIW) forming north of the Polar Front (PF) is rich in 14C, whereas surface waters south of the PF are depleted in 14C. A distinct old 14C signal was found for the contribution of the Pacific Deep Water (PDW) to the return flow of Circumpolar Deep Waters (CDW). Comparison to previous measurements shows a 14C decrease in surface waters, consistent with northward displacement of surface waters, replacement by old deep waters upwelled at the Antarctic Divergence, and atmospheric decline in 14C. Conversely, an increase was found in deeper layers, in the AAIW. Large uncertainties, associated with previous methods for separating natural and bomb 14C when in the Southern Ocean south of 45 degrees S, motivated us to develop a new approach that relies on a simple mixing model and on chlorofluorocarbon (CFC) measurements also taken during CIVA1. This approach leads to inventories for CIVA1 that are equal to or higher than those calculated with previous methods. Differences between old and new methods are especially high south of approximately 55 degrees S, where bomb 14C inventories are relatively modest.
-
Fluid inclusion populations in quartz-rich gold ores from the Barberton Greenstone Belt, Eastern Transvaal, South AfricaColes, Ann Cochran (The University of Arizona., 1982)