Blank Assessment for Ultra-Small Radiocarbon Samples: Chemical Extraction and Separation Versus AMS
Author
Santos, Guaciara M.Southon, John R.
Drenzek, Nicholas J.
Ziolkowski, Lori A.
Druffel, Ellen
Xu, Xiaomei
Zhang, Dachun
Trumbore, Susan
Eglinton, Timothy I.
Hughen, Konrad A.
Issue Date
2010-01-01
Metadata
Show full item recordCitation
Santos, G. M., Southon, J. R., Drenzek, N. J., Ziolkowski, L. A., Druffel, E., Xu, X., ... & Hughen, K. A. (2010). Blank assessment for ultra-small radiocarbon samples: Chemical extraction and separation versus AMS. Radiocarbon, 52(3), 1322-1335.Journal
RadiocarbonDescription
From the 20th International Radiocarbon Conference held in Kona, Hawaii, USA, May 31-June 3, 2009.Additional Links
http://radiocarbon.webhost.uits.arizona.edu/Abstract
The Keck Carbon Cycle AMS facility at the University of California, Irvine (KCCAMS/UCI) has developed protocols for analyzing radiocarbon in samples as small as ~0.001 mg of carbon (C). Mass-balance background corrections for modern and 14C-dead carbon contamination (MC and DC, respectively) can be assessed by measuring 14C-free and modern standards, respectively, using the same sample processing techniques that are applied to unknown samples. This approach can be validated by measuring secondary standards of similar size and 14C composition to the unknown samples. Ordinary sample processing (such as ABA or leaching pretreatment, combustion/graphitization, and handling) introduces MC contamination of ~0.6 +/- 0.3 g C, while DC is ~0.3 +/- 0.15 g C. Today, the laboratory routinely analyzes graphite samples as small as 0.015 mg C for external submissions and =0.001 mg C for internal research activities with a precision of ~1% for ~0.010 mg C. However, when analyzing ultra-small samples isolated by a series of complex chemical and chromatographic methods (such as individual compounds), integrated procedural blanks may be far larger and more variable than those associated with combustion/graphitization alone. In some instances, the mass ratio of these blanks to the compounds of interest may be so high that the reported 14C results are meaningless. Thus, the abundance and variability of both MC and DC contamination encountered during ultra-small sample analysis must be carefully and thoroughly evaluated. Four case studies are presented to illustrate how extraction chemistry blanks are determined.Type
Proceedingstext
Language
enISSN
0033-8222ae974a485f413a2113503eed53cd6c53
10.1017/S0033822200046415