• Login
    View Item 
    •   Home
    • Journals and Magazines
    • Radiocarbon
    • Radiocarbon, Volume 52 (2010)
    • Radiocarbon, Volume 52, Number 3 (2010)
    • View Item
    •   Home
    • Journals and Magazines
    • Radiocarbon
    • Radiocarbon, Volume 52 (2010)
    • Radiocarbon, Volume 52, Number 3 (2010)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Characterization and Dating of Saline Groundwater in the Dead Sea Area

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    3610-3362-1-PB.pdf
    Size:
    517.4Kb
    Format:
    PDF
    Download
    Author
    Avrahamov, Naama
    Yechieli, Yoseph
    Lazar, Boaz
    Lewenberg, Omer
    Boaretto, Elisabetta
    Sivan, Orit
    Issue Date
    2010-01-01
    
    Metadata
    Show full item record
    Citation
    Avrahamov, N., Yechieli, Y., Lazar, B., Lewenberg, O., Boaretto, E., & Sivan, O. (2010). Characterization and dating of saline groundwater in the Dead Sea area. Radiocarbon, 52(3), 1123-1140.
    Publisher
    Department of Geosciences, The University of Arizona
    Journal
    Radiocarbon
    Description
    From the 20th International Radiocarbon Conference held in Kona, Hawaii, USA, May 31-June 3, 2009.
    URI
    http://hdl.handle.net/10150/654167
    DOI
    10.1017/S0033822200046208
    Additional Links
    http://radiocarbon.webhost.uits.arizona.edu/
    Abstract
    This work presents an attempt to date brines and determine flow rates of hypersaline groundwater in the extremely dynamic system of the Dead Sea (DS), whose level has dropped in the last 30 yr by ~20 m. The processes that affect the carbon species and isotopes of the groundwater in the DS area were quantified in order to estimate their flow rate based on radiocarbon and tritium methods. In contrast to the conservative behavior of most ions in the groundwater, the carbon system parameters indicate additional processes. The dissolved inorganic carbon (DIC) content of most saline groundwater is close to that of the DS, but its stable isotopic composition (13CDIC) is much lower. The chemical composition and carbon isotope mass balance suggest that the low 13CDIC of the saline groundwater is a result of anaerobic organic matter oxidation by bacterial sulfate reduction (BSR) and methane oxidation. The radiocarbon content (14CDIC) of the saline groundwater ranged from 86 pMC (greater than the ~82 pMC value of the DS in the 2000s) to as low as 14 pMC. The similarity between the 14CDIC value and Na/Cl ratio of the groundwater at the DS shore and that of the 1980s DS brine indicates that the DS penetrated to the aquifer at that time. The low 14CDIC values in some of the saline groundwater suggest the existence of ancient brine in the subaquifer.
    Type
    Proceedings
    text
    Language
    en
    ISSN
    0033-8222
    ae974a485f413a2113503eed53cd6c53
    10.1017/S0033822200046208
    Scopus Count
    Collections
    Radiocarbon, Volume 52, Number 3 (2010)

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.