• Login
    View Item 
    •   Home
    • Journals and Magazines
    • Radiocarbon
    • Radiocarbon, Volume 52 (2010)
    • Radiocarbon, Volume 52, Number 3 (2010)
    • View Item
    •   Home
    • Journals and Magazines
    • Radiocarbon
    • Radiocarbon, Volume 52 (2010)
    • Radiocarbon, Volume 52, Number 3 (2010)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Turnover Rate of Soil Organic Matter and Origin of Soil 14CO2 in Deep Soil from a Subtropical Forest in Dinghushan Biosphere Reserve, South China

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    3640-3392-1-PB.pdf
    Size:
    1.149Mb
    Format:
    PDF
    Download
    Author
    Ding, P.
    Shen, C. D.
    Wang, N.
    Yi, W. X.
    Ding, X. F.
    Fu, D. P.
    Liu, K. X.
    Zhou, L. P.
    Issue Date
    2010-01-01
    
    Metadata
    Show full item record
    Citation
    Ding, P., Shen, C. D., Wang, N., Yi, W. X., Ding, X. F., Fu, D. P., ... & Zhou, L. P. (2010). Turnover rate of soil organic matter and origin of soil 14CO2 in deep soil from a subtropical forest in Dinghushan Biosphere Reserve, South China. Radiocarbon, 52(3), 1422-1434.
    Publisher
    Department of Geosciences, The University of Arizona
    Journal
    Radiocarbon
    Description
    From the 20th International Radiocarbon Conference held in Kona, Hawaii, USA, May 31-June 3, 2009.
    URI
    http://hdl.handle.net/10150/654376
    DOI
    10.1017/S0033822200046506
    Additional Links
    http://radiocarbon.webhost.uits.arizona.edu/
    Abstract
    This paper examines the carbon isotopes (13C, 14C) of soil organic carbon (SOC) and soil CO2 from an evergreen broadleaf forest in southern China during the rainy season. The distribution of SOC 13C, and SOC content with depth, exhibits a regular decomposition of SOC compartments with different turnover rates. Labile carbon is the main component in the topsoil (0-12 cm) and has a turnover rate between 0.1 and 0.01 yr-1. In the middle section (12-35 cm), SOC was mainly comprised of mediate carbon with turnover rates ranging between 0.01 and 0.025. Below 35 cm depth (underlayer section), the SOC turnover rate is slower than 0.001 yr-1, indicating that passive carbon is the main component of SOC in this section. The total production of humus-derived CO2 is 123.84 g C m-2 yr-1, from which 88% originated in the topsoil. The middle and underlayer sections contribute only 10% and 2% to the total humus-derived CO2 production, respectively. Soil CO2 13C varies from -24.7 to -24.0, showing a slight isotopic depth gradient. Similar to soil CO2 13C, ∆14C values, which range from 100.0 to 107.2, are obviously higher than that of atmospheric CO2 (60-70) and SOC in the middle and underlayer section, suggesting that soil CO2 in the profile most likely originates mainly from SOC decomposition in the topsoil. A model of soil CO2 ∆14C indicates that the humus-derived CO2 from the topsoil contributes about 65-78% to soil CO2 in each soil gas sampling layer. In addition, the humus-derived CO2 contributes ~81% on average to total soil CO2 in the profile, in good agreement with the field observation. The distribution and origin of soil 14CO2 imply that soil CO2 will be an important source of atmospheric 14CO2 well into the future.
    Type
    Proceedings
    text
    Language
    en
    ISSN
    0033-8222
    ae974a485f413a2113503eed53cd6c53
    10.1017/S0033822200046506
    Scopus Count
    Collections
    Radiocarbon, Volume 52, Number 3 (2010)

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.