Chronology of the Atmospheric Mercury in Lagoa da Pata Basin, Upper Rio Negro Region of Brazilian Amazon
Author
Santos, G. M.Cordeiro, R. C.
Silva Filho, E. V.
Turcq, B.
Lacerda, L. D.
Fifield, L. K.
Gomes, P. R. S.
Hausladen, P. A.
Sifeddine, A.
Albuquerque, A. L. S.
Issue Date
2001-01-01Keywords
drainage basinsLagoa da Pata
mercury
Rio Negro
Sao Gabriel da Cachoeira Brazil
lacustrine sedimentation
human ecology
lake sediments
Amazon Basin
depositional environment
cores
sedimentation
sedimentation rates
pollution
human activity
atmosphere
Brazil
South America
correlation
chronology
metals
paleoclimatology
Pleistocene
upper Pleistocene
sediments
Cenozoic
Quaternary
C 14
carbon
dates
isotopes
radioactive isotopes
absolute age
Metadata
Show full item recordCitation
Santos, G. M., Cordeiro, R. C., Silva Filho, E. V., Turcq, B., Lacerda, L. D., Fifield, L. K., ... & Albuquerque, A. L. S. (2001). Chronology of the atmospheric mercury in Lagoa da Pata basin, Upper Rio Negro region of Brazilian Amazon. Radiocarbon, 43(2B), 801-808.Journal
RadiocarbonDescription
From the 17th International Radiocarbon Conference held in Jerusalem, Israel, June 18-23, 2000.Additional Links
http://radiocarbon.webhost.uits.arizona.edu/Abstract
We present prehistoric mercury accumulation rates in a dated sediment core from Lagoa da Pata, a remote lake in Sao Gabriel da Cachoeira, northern Amazon. The sediment samples were subdivided for mercury and radiocarbon analyses. A group of 18 samples have been prepared at ANU for 14C dating by accelerator mass spectrometry (AMS). The dating results show a good correlation with depth in the core, down to 41,500 BP. Three distinct sections are clearly identified in the core. They consist of upper and lower organic-rich layer, separated by an inorganic layer which represents a short period of rapid accumulation around 18 ka BP. The mercury accumulation rate is found to be larger in the upper layer (18 ka to present) than in the lower one (41 ka to 25 ka), by a factor of three. The larger accumulation rate of mercury is probably associated with warmer temperatures and a higher frequency of forest fires during the Holocene.Type
Proceedingstext
Language
enISSN
0033-8222ae974a485f413a2113503eed53cd6c53
10.1017/S0033822200041473
Scopus Count
Collections
Related items
Showing items related by title, author, creator and subject.
-
Accelerator Mass Spectrometry Radiocarbon Measurements on Marine Carbonate Samples from Deep Sea Cores and Sediment TrapsBroecker, Wallace S.; Klas, Mieczyslawa; Ragano, Beavan Nancy; Mathieu, Guy; Mix, Alan C.; Andree, Michael; Oeschger, Hans; Wölfli, Willy; Suter, Martin; Bonani, Georges; et al. (American Journal of Science, 1988-01-01)
-
Applicability of the Universal Soil Loss Equation to Semiarid Rangeland Conditions in the SouthwestRenard, K. G.; Simanton, J. R.; Osborn, H. B.; United States Department of Agriculture, Agricultural Research Service, Western Region, Southwest Watershed Research Center, Tucson, Arizona 85705 (Arizona-Nevada Academy of Science, 1974-04-20)An erosion prediction method that has recently received wide attention in the United States is the universal soil loss equation which is given as: a=rklscp. Where a = estimated soil loss (tons/acre/year), r = a rainfall factor, k = a soil erodibility factor, l = a slope length factor, s = a slope gradient factor, c = a cropping-management factor, and p = an erosion control practice factor. Data collected on the walnut gulch experimental watershed in southeastern Arizona were used to estimate these factors for semiarid rangeland conditions. The equation was then tested with data from watersheds of 108 and 372 acres. The predicted value of annual sediment yield was 1.29 tons/acre/year as compared with an average 1.64 tons/acre/year for 4 years of data for the 108-acre watershed, and a sediment yield of 0.39 tons/acre/year was predicted for the 372-acre watershed as compared with the measured value of 0.52 tons/acre/year. Although good agreement was noted between predicted and actual sediment yield, additional work is needed before the equation can be applied to other areas of the southwest.
-
Display and Manipulation of Inventory DataGale, R. D.; Russel, J. W.; Siverts, L. E.; Tonto National Forest, Phoenix, Arizona; Southwestern Region, U.S.F.S., Albuquerque, New Mexico (Arizona-Nevada Academy of Science, 1974-04-20)A stochastic model is presented for the prediction of sediment yield in a semi-arid watershed based on rainfall data and watershed characteristics. Random variables which lead to uncertainty in the model are rainfall amount, storm duration, runoff, and peak flow. Soil conservation service formulas are used to compute the runoff and peak flow components of the universal soil loss equation, and a transformation of random variables is used to obtain the distribution function of sediment yield from the joint distribution of rainfall amount and storm duration. Applications of the model are in the planning of reservoirs and dams where the effective lifetime of the facility may be evaluated in terms of storage capacity as well as the effects of land management of the watershed. In order to calibrate the model and to evaluate the uncertainties involved, experimental data from the Atterbury watershed near Tucson, Arizona were used.