Radiocarbon and Stable Isotope Analyses on the Earliest Jomon Skeletons from the Tochibara Rockshelter, Nagano, Japan
Author
Yoneda, MinoruHirota, Masashi
Uchida, Masao
Tanaka, Atsushi
Shibata, Yasuyuki
Morita, Masatoshi
Akazawa, Takeru
Issue Date
2002-01-01Keywords
Tochibara JapanHomo sapiens
Nagano Japan
nitrogen
N 15 N 14
Hominidae
Homo
Homo sapiens
Primates
Honshu
diet
Theria
Eutheria
Mammalia
archaeological sites
isotope ratios
Holocene
Far East
Japan
Chordata
Tetrapoda
Vertebrata
bones
Asia
Cenozoic
Quaternary
C 14
carbon
isotopes
radioactive isotopes
C 13 C 12
stable isotopes
absolute age
geochemistry
Metadata
Show full item recordCitation
Yoneda, M., Hirota, M., Uchida, M., Tanaka, A., Shibata, Y., Morita, M., & Akazawa, T. (2002). Radiocarbon and stable isotope analyses on the Earliest Jomon skeletons from the Tochibara rockshelter, Nagano, Japan. Radiocarbon, 44(2), 549-557.Journal
RadiocarbonAdditional Links
http://radiocarbon.webhost.uits.arizona.edu/Abstract
This study presents the results of carbon and nitrogen isotopic analyses of six human skeletons excavated from the Tochibara rockshelter (Nagano, Japan). The human skeletons were reported to be accompanied by "Oshigata-mon" type pottery dating to the Earliest Jomon period (8900 BP approximately 6600 BP). A radiocarbon determination from charcoal associated with the human remains was reported to be 8650 +/180 BP (GaK-1056). However, the depositional context of human skeletons was uncertain because they were recovered by excavations that were dug by prescribed levels. Our results indicated that these skeletons date to the Earliest Jomon period; the 14C determinations place these remains between 8260 +/100 BP (TERRA-b030799ab38) and 8580 +/100 BP (TERRA-b011300a35). This coincides with the archaeological evidence that these specimens are some of the oldest Jomon skeletal materials. Furthermore, delta-13C and delta-15N values provide evidence for the first reconstruction of the diet of an inland Earliest Jomon population. Although the distribution of data indicated a possibility that they had exploited small amounts of seafood, the isotopic data point to this group having relied heavily on a terrestrial ecosystem based on C3 plants.Type
Articletext
Language
enISSN
0033-8222ae974a485f413a2113503eed53cd6c53
10.1017/S0033822200031908
Scopus Count
Collections
Related items
Showing items related by title, author, creator and subject.
-
Iron-Manganese System for Preparation of Radiocarbon AMS Targets: Characterization of Procedural Chemical-Isotopic Blanks and FractionationVerkouteren, R. Michael; Klinedinst, Donna B.; Currie, Lloyd A. (Department of Geosciences, The University of Arizona, 1997-01-01)We report a practical system to mass-produce accelerator mass spectrometry (AMS) targets with 10-100 micrograms carbon samples. Carbon dioxide is reduced quantitatively to graphite on iron fibers via manganese metal, and the Fe-C fibers are melted into a bead suitable for AMS. Pretreatment, reduction and melting processes occur in sealed quartz tubes, allowing parallel processing for otherwise time-intensive procedures. Chemical and isotopic (13C, 14C) blanks, target yields and isotopic fractionation were investigated with respect to levels of sample size, amounts of Fe and Mn, pretreatment and reduction time, and hydrogen pressure. With 7-day pretreatments, carbon blanks exhibited a lognormal mass distribution of 1.44 micrograms (central mean) with a dispersion of 0.50 micrograms (standard deviation). Reductions of 10 micrograms carbon onto targets were complete in 3-6 h with all targets, after correction for the blank, reflecting the 13C signature of the starting material. The 100 micrograms carbon samples required at least 15 h for reduction; shorter durations resulted in isotopic fractionation as a function of chemical yield. The trend in the 13C data suggested the presence of kinetic isotope effects during the reduction. The observed CO2-graphite 13C fractionation factor was 3-4% smaller than the equilibrium value in the simple Rayleigh model. The presence of hydrogen promoted methane formation in yields up to 25%. Fe-C beaded targets were made from NIST Standard Reference Materials and compared with graphitic standards. Although the 12C ion currents from the beads were one to two orders of magnitude lower than currents from the graphite, measurements of the beaded standards were reproducible and internally consistent. Measurement reproducibility was limited mainly by Poisson counting statistics and blank variability, translating to 14C uncertainties of 5-1% for 10-100 micrograms carbon samples, respectively. A bias of 5-7% (relative) was observed between the beaded and graphitic targets, possibly due to variations in sputtering fractionation dependent on sample size, chemical form and beam geometry.
-
On Correcting 14C Ages of Gastropod Shell Carbonate for FractionationPigati, Jeffrey S. (Department of Geosciences, The University of Arizona, 2002-01-01)Correcting the 14C age of a sample for fractionation is straightforward if the measured carbon was derived entirely from the atmosphere, either directly or through chemical and/or biological reactions that originated with atmospheric carbon. This correction is complicated in the case of gastropods that incorporate carbon from limestone or secondary carbonate (e.g. Soil carbonate) during shell formation. The carbon isotopic composition of such gastropod shells is determined by fractionation, as well as mixing of carbon from sources with different isotopic values. Only the component of shell carbonate derived from atmospheric carbon should be corrected for fractionation. In this paper, the author derives a new expression for correcting the measured 14C activity of gastropod shells for fractionation, and describe an iterative approach that allows the corrected 14C activity and the fraction of shell carbonate derived from atmospheric carbon to be determined simultaneously.
-
Comparison of Vanadium Oxide Catalysts for Synthesis of Benzene: Benzene Purity, Yields and Reconditioning MethodsEnerson, T. B.; Haas, Herbert; Zarrabi, Kaveh; Titus, R. L. (Department of Geosciences, The University of Arizona, 1998-01-01)This study compares vanadium oxide catalysts from three different sources: Noakes (N), Harshaw Chemical (H) and Kh. Arslanov at the St. Petersburg State University, Russia (R). The catalysts are used to convert acetylene to benzene in the last step of benzene synthesis. The organic purity of benzene in all three catalysts is high; 99.91-99.93% for (N) and (H) and 99.87% for (R). The benzene yields range from 90.0 to 94.3%. (N) averaged 92.6%, (H) averaged 91.1% and (R) averaged 92.0%. A conversion residue in the catalysts was analyzed for delta-13C and found to be isotopically lighter relative to acetylene by -2.2 per mil for (N) and (H) and -3.9 per mil for (R). Benzene yields were studied on different reconditioning methods applied to all catalysts: heating to 400 degrees C in air averaged 92.3%; the same temperature with a half and half mixture of O2 and Ar averaged 91.9%, adding a half and half mixture of H2 and Ar at 200 degrees C to the end of this treatment averaged 91.8%. Based on this research, the obvious difference seen between the catalysts is in their trace by-products.